| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 8, 35 |
| Ïîòåìêèí Â.Ã. — MatLab 5 äëÿ ñòóäåíòîâ | 284 |
| Ãîâîðóõèí Â., Öèáóëèí Á. — Êîìïüþòåð â ìàòåìàòè÷åñêîì èññëåäîâàíèè | 140 |
| Êèðñàíîâ Ì.Í. — Ðåøåáíèê. Òåîðåòè÷åñêàÿ ìåõàíèêà | 117, 360, 367 |
| Ìàíçîí Á.Ì. — Maple V power edition | 214 |
| Bartle R.G. — The Elements of Integration | 52 |
| Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 469 |
| Nevanlinna R., Paatero V. — Introduction to Complex Analysis | 2 |
| Rudin W. — Fourier Analysis on Groups | 257 |
| Hunter J.K., Nachtergaele B. — Applied Analysis | 4 |
| Bruce C.Berndt — Ramanujan's Notebooks (part 5) | 209 |
| Henrici P. — Applied and Computational Complex Analysis. I: Power Series, Integration, Conformal Mapping, Location of Zeros. | 68, 173 |
| Gray R.M. — Probability, Random Processes and Ergodic Properties | 85 |
| Fritz J. — Lectures on advanced numerical analysis | 2, 5 |
| Goldschmidt D.M. — Algebraic Functions and Projective Curves | 69, 70, 164, 171 |
| Bump D. — Algebraic Geometry | 71, 196 |
| Rudin W. — Principles of Mathematical Analysis | 16, 140, 150, 326 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 8 |
| Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1) | 925, 2041, 2042 |
| Benvenuto N., Cherubini G. — Algorithms for communications systems and their applications | 3 |
| Artin E. — Geometric Algebra | 193 |
| Dummit D.S., Foote R.M. — Abstract algebra | 232, 270, 299 |
| Lang S. — Algebra | 284, 578, 637 |
| Berger M. — A Panoramic View of Riemannian Geometry | 192 |
| Hilgert J. — Analysis I - IV | 193 |
| Wipf A. — Theoretische Mechanik | 211 |
| Fisher Y. — Fractal Image Compression. Theory and Application | 46, 143, 182, 187 |
| Evans L.C. — Partial Differential Equations | 241, 635, 636 |
| Ash R.B. — A Course In Algebraic Number Theory | 1-1, 2-1 |
| Pollard D. — Convergence of Stochastic Processes | 14, 24, 156 |
| Ames W.F. — Numerical methods for Partial Differential Equations | 115, 333 |
| Bulirsch R., Stoer J. — Introduction to numerical analysis | 13, 184ff |
| Lipschutz Seymour — Schaum's Outline of Theory and Problems of Linear Algebra (Schaum's Outlines) | 44, 57—59, 203, 219—220, 238 |
| Brauer F., Nohel J.A. — The qualitative theory of ordinary differential equations | 26, 38 |
| Hamilton W.R. — The collected mathematical papers. Volume 3: algebra | xvii, 657—65 |
| Streater R.S., Wightman A.S. — PCT, Spin and Statistics, and All That | 33 |
| Ben-Israel A., Greville T. — Generalized inverses: Theory and applications | 6, 295 |
| Olver P.J. — Equivalence, Invariants and Symmetry | 34, 37, 382 |
| Finlayson B.A. — Numerical Methods for Problems With Moving Fronts | 11, 61, 165, 166, 199, 455 |
| Golub G.H., Ortega J.M. — Scientific Computing and Differential Equations : An Introduction to Numerical Methods | 128, 317 |
| Higham N. — Accuracy and stability of numerical algorithms | 117—129 |
| Conte S.D., de Boor C. — Elementary numerical analysis - an algorithmic approach | 170ff |
| Kollar J., Mori S. — Birational geometry of algebraic varieties | 154 |
| Bump D. — Algebraic Geometry and the Theory of Curves | 71, 196 |
| Kodaira K. — Complex manifolds and deformation of complex structures | 148 |
| Pohst M.E. — Computational Algebraic Number Theory | 1, 13, 27, 61 |
| Hille E. — Ordinary Differential Equations in the complex domain | 4 |
| Hoffman K., Kunze R. — Linear algebra | 273 |
| Baker A. — Matrix Groups: An Introduction to Lie Group Theory | 5—7, 33, 111 |
| Lutkepohl H. — Handbook of Matrices | 101, 263 |
| Meyer C.D. — Matrix analysis and applied linear algebra | 269 |
| Silverman J.H. — The arithmetic of elliptic curves | 101, 257, 258, 274 |
| Handscomb D.C. — Methods of numerical approximation | 9, 29 |
| Lightstone A.H., Robinson A. — Nonarchimedean Fields and Asymptotic Expansions | 180 |
| Henrici P. — Applied and Computational Complex Analysis (Vol. 3) | 306, 531 |
| Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1) | 453 |
| Rudin W. — Real and Complex Analysis | 64, 75, 95, 169, 330 |
| de Branges L., Rovnyak J. — Square summable power series | 5 |
| Porter D., Stirling D.S.G. — Integral equations: a practical treatment, from spectral theory to applications | 64, 69, 351, 352 |
| Matousek J. — Lectures on Discrete Geometry (some chapters) | 321 |
| Casey J. — A treatise on the analytical geometry | 121, 122, 139 |
| Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2) | 925, 2041, 2042 |
| Abell M.L., Braselton J.P. — Mathematica by Example | 307 |
| Hochstadt H. — Integral Equations (Pure & Applied Mathematics Monograph) | 14 |
| Springer G. — Introduction to Riemann Surfaces | 178 |
| Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 453 I |
| Buss S.R. — 3-D computer graphics. A mathematical introduction with openGL | 300, 320, 324, 325 |
| Lee J.M. — Introduction to Smooth Manifolds | 423 |
| Isham J. — Modern Differential Geometry for Physics | 8 |
| Showalter R.E. — Monotone Operators in Banach Space and Nonlinear Partial Differential Equations | 6 |
| Hormander L. — Notions of Convexity | 57 |
| Talbott W.J. — Which Rights Should Be Universal? | See moral principles and norms |
| Kaburlasos V.G. — Towards a Unified Modeling and Knowledge-Representation Based on Lattice Theory: Computational Intelligence and Soft Computing Applications | 44, 188 |
| Lee J.M. — Introduction to Topological Manifolds | 89, 347 |
| Bachman G. — Introduction to p-Adic Numbers and Valuation Theory | 92, 166 |
| Newman M. — Integral Matrices | 4 |
| Kecman V. — Learning and soft computing. Support vector machines, neural networks, and fuzzy logic models | 28—31, 512 |
| Bach E., Shallit J. — Algorithmic Number Theory (òîì 1) | 134, 136, 152, 157 |
| Williamson R.E., Crowell R.H., Trotter H.F. — Calculus of vector functions | 32, 406 |
| Watkins D. — Fundamentals of matrix computations | 112 |
| Fletcher R. — Practical methods of optimization. Volume 1: unconstrained optimization | 7, 48, 81, 92, 100 |
| Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 152 |
| Douglas R.G. — Banach algebra techniques in operator theory | 1 |
| Ohnuki Y. — Unitary representations of the Poincare group and relativistic wave equations | 1 |
| Pugovecki E. — Quantum mechanics in hilbert space | 20 |
| Dwork B., Gerotto G., Sullivan F.J. — An Introduction to G-Functions | 8 |
| Adams R.A. — Sobolev Spaces | 3 |
| Balser W. — Formal power series and linear systems of meromorphic ordinary differential equations | 216 |
| Curtain R.F., Pritchard A.J. — Functional Analysis in Modern Applied Mathematics | 3 |
| Bellman R. — Methods of nonlinear analysis (Vol. 1) | 61 |
| Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 10, 51, 90, 91 |
| Dummit D.S., Foote R.M. — Abstract Algebra | 232, 271, 496 |
| Lorentzen L., Waadeland — Continued fractions and applications | 243 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 69, 190, 396 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume I: Foundations of Mathematics: The Real Number System and Algebra | 403, 460, 470, 481 |
| Bitsadze A.V. — Equations of mathematical physics | 254 |
| Kythe P.K., Schaferkotter M.R. — Partial Differential Equations and Mathematica | 218 |
| Singer I. — Bases in Banach spaces I | 375 |
| Knapp A.W. — Elliptic Curves (MN-40) | 123 |
| Lim Ch., Nebus J. — Vorticity, Statistical Mechanics, and Monte Carlo Simulation | 68, 71, 76, 84, 213, 214, 223, 249, 253, 255 |
| Lam Y. — Geometric Process and Its Applications | 64 |
| Grotschel M., Lovasz L., Schrijver A. — Geometric Algorithms and Combinatorial Optimization | 5, 5—8, 125—126, 148 |
| Jones W.B., Thron W.J. — Continued fractions: Analytic theory and applications | 21 |
| Braselton J.P. — Maple by Example | 139, 328, 329 |
| Resnick S.I. — Heavy-Tail Phenomena: Probabilistic and Statistical Modeling | 168 |
| Halmos P.R. — Measure Theory | 171 |
| Lorenz F., Levy S. — Algebra, Volume I: Fields and Galois Theory | 133 |
| Mill J.V. — The Infinite-Dimensional Topology of Function Spaces | 2, 3, 579 |
| Kaczynski T., Mischaikow K.M. — Computational Homology | 398 |
| Ash R.B. — Abstract algebra: the basic graduate year | 7.1, 7.3 |
| Eilenberg S., Steenrod N. — Foundations of Algebraic Topology | 44 |
| Reich S., Shoikhet D. — Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces | 20 |
| Kurtz D.S., Swartz C.W. — Theories of Integration | 80, 122 |
| Auslender A., Teboulle M. — Asymptotic Cones and Functions in Optimization and Variational Inequalities | 1 |
| Hughes D.R., Piper F.C. — Projective Planes | 8, 187 |
| Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 205 |
| Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 314, 840 |
| Dudley R.M., Fulton W. (Ed) — Real Analysis and Probability | 156 |
| Kohonen T. — Self-organizing maps | 4,15 |
| Lam T.Y. — A first course in noncommutative ring theory | 231 |
| Jones G.A., Singerman D. — Complex Functions: An Algebraic and Geometric Viewpoint | 81 |
| Thomas A.D. — Zeta-functions | 8,114 |
| Debnath L. — Linear Partial Differential Equations for Scientists and Engineers | 170, 450, 629 |
| Prugovecki E. — Quantum Mechanics in Hilbert Space | 20 |
| Lorenz M. — Multiplicative Invariant Theory | 14, 42 |
| Murty M.R. — Problems in Analytic Number Theory | 147 |
| Gabbay D.M. (Ed), Woods J. (Ed) — Logic and the Modalities in the Twentieth Century, Vol. 7 | 227 |
| Hunt B. — Geometry of Some Special Arithmetic Quotients | 277 |
| James I.M. — Topological and Uniform Spaces | 33 |
| Engler A.J., Prestel A. — Valued Fields | 13 |
| Searcid M. — Metric Spaces | 16, 222—224 |
| Bourbaki N. — Algebra II: Chapters 4-7 | V, page 47 |
| Araki H. — Mathematical Theory of Quantum Fields | 28, 193, 197, 208 |
| Ellis G. — Rings and Fields | 14 |
| Samuel P. — Algebraic theory of numbers | II.6 |
| Cooper J. — A Matlab Companion for Multivariable Calculus | 34 |
| Gohberg I., Goldberg S. — Basic Operator Theory | 7, 194 |
| Allouche J.-P., Shallit J. — Automatic Sequences: Theory, Applications, Generalizations | 107 |
| Shoup V.A. — Computational Introduction to Number Theory and Algebra | 213, 458 |
| Ericson T. — Codes on Euclidean Spheres | 42 |
| Hahn L.- Sh., Epstein B. — Classical Complex Analysis | 136 |
| Light W.A., Cheney E.W. — Approximation Theory in Tensor Product Spaces | 3 |
| Dugunji J. — Topology | 414 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 3) Scattering theory | 8 |
| Neittaanmaki P., Tiba D. — Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications | 32 |
| Greiner W. — Quantum mechanics. An introduction | 424 |
| Sahoo P.K., Riedel T. — Mean Value Theorems and Functional Equations | 156 |
| Berberian S.K. — Fundamentals of Real Analysis | 314 |
| Pugh C.C. — Real Mathematical Analysis | 27 |
| Thaller B. — Visual quantum mechanics | 22, 31 |
| Rockafellar R.T. — Convex analysis | 129—132, 136, 427 |
| Morris S.A. — Topology without tears | 95 |
| Roggenkamp K.W., Huber-Dyson V. — Lattices Over Orders I | III 14 |
| Lounesto P., Hitchin N.J. (Ed), Cassels J.W. (Ed) — Clifford Algebras and Spinors | 8, 19, 36, 37, 70 |
| Chevalley C., Cartier P. — Algebraic Theory of Spinors and Clifford Algebras: Collected Works of Claude Chevalley. Volume 2 | 116 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 27 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 27 |
| Bronson R. — Schaum's Outline of Matrix Operations | 110 |
| Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 8 |
| Atkinson K.E., Han W. — Theoretical Numerical Analysis: A Functional Analysis Framework | 8 |
| Khuri A.I. — Advanced calculus with applications in statistics | 179 |
| Jones J.A., Jones J.M. — Elementary Number Theory | 197 |
| Stone C.J.D. — Course in Probability and Statistics | 456, 495 |
| Wilansky A. — Modern Methods in Topological Vector Spaces | 18, 20, see Table 15; Equivalent, Larger; Smaller |
| Cohn P.M. — Algebraic numbers and algebraic functions | 5, 76 |
| Love R., Morris J., Wesolowsky G. — Facilities location | 264 |
| Delves L.M. (ed.), Walsh J. (ed.) — Numerical Solution of Integral Equations | 43, 49, 87, 114, 116, 122, 208, 226, 227 |
| Royden H.L. — Real Analysis | 111, 181, 184 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators | $8^1$ |
| Stewart I., Tall D. — Algebraic Number Theory and Fermat's Last Theorem | 49, 82, 115, 146 |
| Eschrig H. — The Fundamentals of Density Functional Theory | 109 |
| Rickart C.E. — General Theory of Banach Algebras | 2 |
| Dudgeon D.E., Mersereau R.M. — Multidimensional Digital Signal Processing | 126—134, |
| White D.J. — Markov Decision Processes | 63 |
| Rudin W. — Functional analysis | 4 |
| Lang S. — Undergraduate Algebra | 274 |
| Liu Q., Erne R. — Algebraic Geometry and Arithmetic Curves | 77, 272—274 |
| Lang S.A. — Undergraduate Analysis | 131, 293 |
| Sinha S.M. — Mathematical Programming: Theory and Methods | 34 |
| Neukrich J. — Algebraic number theory | 8 |
| Rall D. — Computational Solution to Nonlinear Operator Equations | 12, 38 |
| Laumon G. — Cohomology of Drinfeld modular varieties (Part 1) | 93 |
| Griffits D.J. — Introduction to quantum mechanics | 78 |
| Eidelman Y., Milman V., Tsolomitis A. — Functional Analysis. An Introduction | 7 |
| Royden H.L. — Real Analysis | 111, 181, 184 |
| Boas R.P. — A Primer of Real Functions | 218, 221 |
| Lin C.C., Segel L.A. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 63 |
| Lang S. — Real Analysis | 156 |
| Kiwiel K.C. — Methods of Descent for Nondifferentiable Optimization | 2 |
| Cohn P.M. — Skew Fields : Theory of General Division Rings (Encyclopedia of Mathematics and its Applications) | 422 |
| Cohen A.M., Cuypers H., Sterk H. — Some tapas of computer algebra | 113 |
| Taylor J.C. — An Introduction to Measure and Probability | 58 |
| Shiryaev A.N. — Probability | 260 |
| Hale J.K., Kocak H. — Dynamics and Bifurcations | 175, 215r, 390, 410r |
| Kannan D. (ed.), Lakshmikantham V. (ed.) — Handbook of stochastic analysis and applications | 23 |
| Chipot M., Quittner P. — Stationary Partial Differential Equations, Vol. 1 | 500 |
| Bichteler K. — Integration - a functional approach | 10, 27 |
| Jahne B. — Digital Image Processing | 61, 178, 461 |
| Rudin W. — Real and complex analysis | 65, 76, 95, 96 |
| Zauderer E. — Partial Differential Equations of Applied Mathematics | 173, 179 |
| Lebedev L.P., Cloud M.J. — Tensor Analysis | 90 |
| Barton J.J., Nackman L.R. — Scientific and engineering C++ | 614 |
| Kress R., Gehring F.W. — Numerical Analysis | 26 |
| Dieudonne J. — Foundation of Modern Analysis | 5.1 |
| Higham N.J. — Accuracy and Stability of Numerical Algorithms | 105—117 |
| Robinson D.J.S. — A Course in Linear Algebra with Applications | 236, 238 |
| Guggenheimer H.W. — Applicable Geometry | 60 |
| Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 1) | 20 |
| Huishi Li — An Introduction to Commutative Algebra: From the Viewpoint of Normalization | 35 |
| Duffie D. — Security Markets. Stochastic Models | 29 |
| Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | 164, 165, 167, 178, 293 |
| Greenberg M.D. — Advanced engineering mathematics | 413, 421, 601, 718, 723, 882 |
| Kushilevitz E., Nisan N. — Communication Complexity | 39, 165 |
| Bonnans F.J., Gilbert C.J., Lemarechal C. — Numerical Optimization | 263 |
| Halmos P.R. — Finite-Dimensional Vector Spaces | 121 |
| Blyth T.S., Robertson E.F. — Further Linear Algebra | 13 |
| O'Neill B. — Elementary differential geometry | 43 |
| Bachman G., Beckenstein E. — Fourier And Wavelet Analysis | 9 |
| Stakgold I. — Green's Functions and Boundary Value Problems | 259 |
| Phillips G.M. — Interpolation and Approximation by Polynomials | 49 |
| Aubin T. — Nonlinear Analysis on Manifolds: Monge-Ampere Equations | 70 |
| Helemskii A.Ya. — Lectures and Exercises on Functional Analysis, Vol. 233 | 55 |
| Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 8, 35 |
| Sack J.R., Urrutia J. (Ed) — Handbook of Computational Geometry | 251 |
| Weir A.J. — Lebesgue Integration and Measure | 70, 154, 165, 199, 220 |
| von zur Gathen J., Gerhard J. — Modern computer algebra | 394, 447, 671, 681 |
| Bogachev V.I. — Measure Theory Vol.2 | I: 249 |
| Dickson L.E. — History of the Theory of Numbers, Volume I: Divisibility and Primality | 236, 252, 322 |
| Strichartz R.S. — The way of analysis | 358, 361, 364, 570, 670 |
| Sakai S. — C*-algebras and W*-algebras | 1 |
| Wang Z.X., Guo D.R., Xia X.J. — Special Functions | 39 |
| Schechter M. — Spectra of partial differential operators | 2 |
| Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 228, 230—231, 235, 250, 256—257, 264, 272—273, 275 |
| Strang G. — Linear Algebra and Its Applications | 362, 366, 368, 369 |
| Bingham N.H., Goldie C.M., Teugels J.L. — Regular variation | see “Amalgam”, “Supremum norm”, “Variation norm” |
| Lopuzanski J. — An introduction to symmetry and supersymmetry in quantum field theory | 28, 30, 31, 40 |
| Köthe G. — Topological vector spaces I | 123 |
| Burkhardt H. — Theory of Functions of a Complex Variable | 14, 19 |
| Peleg Y., Pnini R., Zaarur E. — Schaum's outline of theory and problems of quantum mechanics | 57 |
| Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 2 |
| Hannan E. J. — Multiple time series | 5, 57, 497, 504, 505 |
| Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1) | 303 |
| Stewart G.W. — Matrix algorithms. Volume 2: Eigensystems | 25, 36 |
| Munkres J.R. — Analysis on manifolds | 4 |
| Ascher U.M., Russell R.D., Mattheij R.M. — Numerical Solution of Boundary Value Problems for Ordinary Differential Equations | 36, 37 |
| Kirillov A.A. — Elements of the Theory of Representations | 36 |
| Goswami J.C., Chan A.K. — Fundamentals of Wavelets : Theory, Algorithms, and Applications | 6 |
| Demidov A.S. — Generalized Functions in Mathematical Physics: Main Ideas and Concepts | 32 |
| Logan J.D. — Invariant Variational Principles | 2 |
| Bhatia N.P., Szego G.P. — Dynamical Systems: Stability Theory and Applications | 0.1.1, 0.1.2 |
| Husain T., Khaleelulla S.M. — Barrelledness in Topological and Ordered Vector Spaces | 8 |
| Berger M., Cole M. (translator) — Geometry I (Universitext) | 8.1.1, 11.8.12.1 |
| Morimoto M. — Introduction to Sato's hyperfunctions | 241 |
| Hu S.-T. — Elements of real analysis | 213 |
| Munkres J. — Topology | 122 |
| Tricomi F.G. — Integral equations | 9 |
| Warshauer M.L. — The Witt Group of Degree K Maps and Asymmetric Inner Product Spaces | 61 |
| Berinde V. — Iterative Approximation of Fixed Points | 7 |
| Tarantola A. — Inverse problem theory and methods for model parameter estimation | 61, 117, 183, 235 |
| Mix D.F., Olejniczak K.J. — Elements of Wavelets for Engineers and Scientists | 36ff |
| Musielak J. — Orlicz Spaces and Modular Spaces | 2 |
| Feller W. — Introduction to probability theory and its applications (Volume II) | 256, 350, 636, 642 |
| Dickson L.E. — History of the Theory of Numbers, Volume ll: Diophantine Analysis | 283, 296, 373, 398, 570, 593—594, 677—678, 740 |
| McCormick S.F. — Multigrid Methods (Frontiers in Applied Mathematics) | 2, 3—5, 9 (see also “Energy norm”, “Euclidean norm”) |
| Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 14—16, 18, 20—23, 119 |
| Janich K. — Topology | 26 |
| Fabian M.J., Hajek P., Pelant J. — Functional Analysis and Infinite-Dimensional Geometry | 1 |
| Grimmett G., Stirzaker D. — Probability and Random Processes | 306, 540 |
| Abhyankar S.S. — Local Analytic Geometry | 223, 228, 263, 266, 269, 308 |
| Bitsadze A.V. — Equations of Mathematical Physics | 254 |
| Searle S.R. — Matrix algebra useful for statistics | 69 |
| Paoluzzi A. — Geometric Programming for Computer Aided Design by Alberto Paoluzzi: Book Cover * o Table of Contents Read a Sample Chapter Geometric Programming for Computer Aided Design | 106 |
| Barwise J. (ed.) — Handbook of Mathematical Logic | 700, 765 |
| Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 2) | 20 |
| Aczel J., Dhombres J. — Functional equations in several variables with applications to mathematics, information theory and to the natural and social sciences | 47, 118, 132, 133, 152, 155, 165, 190, 191, 339 |
| Chan Man Fong C.F., De Kee D., Kaloni P.N. — Advanced Mathematics for Engineering and Sciences | 145, 590 |
| Shirer H.N. — Nonlinear Hydrodynamic Modeling: A Mathematical Introduction | 252, 339, 345, 422, 455 |
| Murty M.R. — Problems in analytic number theory | 147 |
| Fuhrmann P.A. — A Polynomial Approach to Linear Algebra | 152 |
| Conway J.H. — The Book of Numbers | 232 |
| Nagata M. — Field Theory | 94 |
| Bertsekas D.P. — Dynamic programming and optimal control (Vol. 1) | 330 |
| Antia H.M. — Numerical Methods for Scientists and Engineers | 609 |
| Olver P.J., Shakiban C. — Applied linear. algebra | 132, 136, 138, 142, 144, 171, 189, 360, 530 |
| Neukirch J. — Class Field Theory | 9, 82 |
| Young R.M. — Excursions in Calculus: An Interplay of the Continuous and the Discrete | 113 |
| Boroczky K. — Finite Packing and Covering | 326, 330 |
| Kaiser D. — A Friendly Guide to Wavelets | 12 |
| Kreyszig E. — Advanced engineering mathematics | 205, 326, 346, 359, 365, 849 |
| Steeb W.- H. — Problems and Solutions in Introductory and Advanced Matrix Calculus | 70, 158, 175 |
| Alexits G., Sneddon I.N. — Convergence Problems of Orthogonal Series | 239 |
| Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 87, 127 |
| Bates D.R. — Quantum Theory | 14 |
| Holmes P., Lumley J.L., Berkooz G. — Turbulence, Coherent Structures, Dynamical Systems and Symmetry | 15 |
| Shankar R. — Principles of quantum mechanics | 9 |
| Bertlmann R.A. — Anomalies in Quantum Field Theory | 453 |
| Tomotada O. — Quantum invariants: a study of knots, 3-manifolds, and their sets | 1 |
| Conway J.B. — A Course in Functional Analysis | 4, 12, 27, 66, 70 |
| Graybill F.A. — Matrices with Applications in Statistics | 93ff. |
| Bertsekas D.P. — Constrained Optimization and Lagrange Multiplier Methods | 7 |
| Arwini K. — Information Geometry: Near Randomness and Near Independence | 25 |
| Oprea J. — Differential Geometry and Its Applications | 43 |
| Basdevant J.-L., Dalibard J. — Quantum Mechanics | 91 |
| Wald R.M. — Quantum field theory in curved spacetime and black hole thermodynamics | 188—189 |
| Anderson G.A., Granas A. — Fixed Point Theory | 602 |
| Lemmermeyer F. — Reciprocity Laws: From Euler to Eisenstein | 43, 127, 349 |
| Miller K.S. — Complex stochastic processes | 102 |
| Saxe K. — Beginning functional analysis | 5 |
| Quarteroni A., Saleri F. — Scientific Computing with MATLAB | 14 |
| Moldestad J. — Computations in Higher Types | 58, 62 |
| Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 18 |
| Cusick T.W. — Stream Ciphers and Number Theory | 341 |
| Lang S. — Introduction to Algebraic and Abelian Functions | 143 |
| Widder D.V. — The Laplace transform | 4 |
| Jacobson N. — Lectures in Abstract Algebra, Vol. 3 | 65 |
| Dieudonne J. — Foundation of Modern Analysis | 5.1 |
| Hungerford T.W. — Algebra | 289 |
| Tuy H. — Convex analysis and global optimization | 9 |
| Curtis M.L. — Abstract Linear Algebra | 111, 125 |
| Karpilovsky G. — Unit groups of classical rings | 4 |
| Marcus M., Minc H. — Survey of matrix theory and matrix inequalities | 40 |
| Eringen A.C. (ed.) — Continuum physics (vol. 4) Polar and Nonlocal Field Theories | 216 |
| Bell E.T. — The Development of Mathematics | 307 |
| Kaiser G. — Friendly Guide to Wavelets | 12 |
| Morrow J., Kodaira K. — Complex Manifolds | 92 |
| Greenhill A.G. — The applications of elliptic functions | 278 |
| Moh T.T. — Algebra | 23, 322 |
| Carl D. Meyer — Matrix Analysis and Applied Linear Algebra Book and Solutions Manual | 269 |
| Doyle J., Francis B., Tannenbaum A. — Feedback control theory | 13 |
| Steeb W., Hardy Y. — Problems and Solutions in Quantum Computing and Quantum Information | 19, 29 |
| Kaplansky I. — Fields and rings | 39 |
| Bridges D.S. — Foundations Of Real And Abstract Analysis | 174 |
| de Souza P.N., Silva J.-N. — Berkeley Problems in Mathematics | 32 |
| Johnson C. — Numerical solution of partial differential equations by the finite element method | 24, 34, 55 |
| Efimov A.V. — Mathematical analysis: advanced topics. Part 2. Application of some methods of mathematical and functional analysis | 153 |
| Rosenblatt M. — Random processes | 191 |
| Prilepko A.I., Orlovsky D.G., Vasin I.A. — Methods for Solving Inverse Problems in Mathematical Physics | 301 |
| Streater R.F., Wightman A.S. — PCT, spin and statistics and all that | 33 |
| Nicholson W.K. — Linear Algebra with Applications | 303, 425 |
| Browder A. — Mathematical Analysis: An Introduction | 129 |
| Lang S. — Algebra | 284, 578, 637 |
| Goffman C. — Calculus of several variables | 4 |
| Onishchik A.L. (ed.) — Lie Groups and Lie Algebras | 74 |
| Harville D.A. — Matrix Algebra: Exercises and Solutions | 21 |
| Saul'yev V.K. — Integration of Equations of Parabolic Type By the Method of Nets | 8, 17 |
| Grosche C. — Path integrals, hyperbolic spaces, and Selberg trace formulae | 204 |
| Rice J.R. — The approximation of functions. Nonlinear and multivariate theory | 225, 260, 263 |
| Krizek M., Somer L., Luca F. — 17 Lectures on Fermat Numbers: From Number Theory to Geometry | 170 |
| Marks R.J.II. — The Joy of Fourier | 532 |
| Seymour L. — Schaum's Outline of Theory and Problems of Discrete Math | 103 |
| Ortega J. M. — Iterative Solution of Nonlinear Equations in Several Variables | 38—45 |
| Rall L.B. — Automatic Differentiation: Techniques and Applications | 23, 99, 100, 115 |
| Lang S. — Introduction to Algebraic and Abelian functions | 143 |
| Cohn P.M. — Algebraic Numbers and Algebraic Functions | 5, 76 |
| Goffman C., Pedrick G. — First course in functional analysis | 71 |
| Valentine F.A. — Convex Sets | 33, 197 |
| Kreyszig E. — Introductory functional analysis with applications | 59, 105 |
| Hu S.T. — Introduction to general topology | 204 |
| Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 72 |
| Hu S.-T. — Introduction to contemporary mathematics | 128, 143 |
| Mikhlin S.G., Prossdorf S. — Singular Integral Operators | 33 |
| Bourgin R.D. — Geometric Aspects of Convex Sets with the Radon-Nikodym Property | see "Uniformly", "Square" |
| Schechter M. — Operator methods in quantum mechanics | 15 |
| Thomas A.D. — Zeta functions, introduction to algebraic geometry | 8, 114 |
| Barnett S.M., Radmore P.M. — Methods in Theoretical Quantum Optics | 51—53 |
| Gloub G.H., Ortega J.M. — Scientific Computing and Differential Equations | 128, 317 |
| Jones K.S., Galliers J.R. — Evaluating Natural Language Processing Systems | 26, 58 |
| Aliprantis C. — Principles of real analysis | 217 |
| Przeworska-Rolewicz D., Rolewicz S. — Equations in linear spaces | 122 |
| Kythe P.K., Puri P. — Partial differential equations and Mathematica | 218 |
| Semadini Z. — Banach Spaces of Continuous Functions. Vol. 1 | 47 |
| Goldstein L.J. — Analytic Number Theory | 52, 77 |
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 26, 58 |
| Knus M.-A. — Quadratic and hermitian forms over rings | 3, 163, 228 |
| Abramovich Y.A., Aliprantis C.D. — An Invitation to Operator Theory | 2 |
| Dembo A., Zeitouni O. — Large deviations techniques and applications | 311 |
| Birkhoff G., Mac Lane S. — A Survey of Modern Algebra | 257, 281 |
| Goswami J., Chan A. — Fundamentals of Wavelets. Theory, Algorithms, and Applications | 6 |
| Natanson I.P. — Theory of Functions of a Real Variable. Volume II | 195 |
| Onishchik A.L. (ed.) — Lie Groups and Lie Algebras (volume 1) | 74 |
| Hille E. — Methods in classical and functional analysis | 2, 9, 25, 40, 41, 55, 57, 306 |
| Zygmund A. — Trigonometric Series. Volume 2 | 163 |
| Devaney R.L., Keen L. — Chaos and Fractals: The Mathematics Behind the Computer Graphics | 109 |
| Audin M. — Geometry | 44 |
| Munkres J.R. — Topology: A First Course | 120 ' ' |
| Hildebrand F.B. — Methods of Applied Mathematics | 82, 88 |
| Audin M. — Geometry | 44 |
| Collatz L. — The numerical treatment of differential equations | 35, 40, 114, 192, 196, 482 |
| Handelman D.E. — Positive Polynomials, Convex Integral Polytopes, and a Random Walk Problem | 105 |
| Pearson R.K. — Mining imperfect data: dealing with contamination and incomplete records | 179 |
| Gorbatsevich V.V., Vinberg E.B., Onishchik A.L. — Foundations of Lie theory and Lie transformation groups | 74 |
| Meijer P.H.E. — Group Theory: The Application to Quantum Mechanics | 6, 16 |
| McShane E.J., Botts T.A. — Real Analysis | 204ff |
| Springer G. — Introduction to Riemann Surfaces | 178 |
| Gelbaum B.R. — Problems in Real and Complex Analysis | 2.3. 24, 6.1. 71 |
| Astarita G., Marrucci G. — Principles of Non-Newtonian Fluid Mechanics | 125, 141, 142, 145, 147, 212 |
| Kwong M.K. — Norm Inequalities For Derivatives And Differences | 1, 3, 150 |
| Douglas R.G. — Banach algebra techniques in operator theory | 1 |
| Loomis L.H. — An introduction to abstract harmonic analysis | 13 |
| Fox L., Parker I.B. — Chebyshev Polynomials in Numerical Analysis | 41, 44 |
| Churchill R.V. — Operational mathematics | 266 |
| Porteous I.R. — Clifford Algebras and the Classical Groups | 191 |
| Schneider H. (ed.) — Recent advances in matrix theory | 46 |
| Lenstra H.W. — Development of the Number Field Sieve | 5, 16, 22, 43, 57, 58, 63, 97, 105, 118 |
| Carroll R.W. — Mathematical physics | 311 |
| Lang S. — Undergraduate analysis | 131, 293 |
| Alicki R., Lendi K. — Quantum Dynamical Semigroups And Applications | 42 |
| Bhatia R. — Fourier Series (Mathematical Association of America Textbooks) | 105 |
| Stakgold I. — Green's functions and boundary value problems | 259 |
| Beckenbach E.F., Bellman R. — Inequalities | 16, 28 |
| Donoghue W.F. — Distributions and Fourier transforms | 84 |
| Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 83 |
| Silverman J. — The arithmetic of dynamical systems | 247, 288 |
| Lounesto P. — Clifford algebras and spinors | 8, 19, 36, 37, 70 |
| Howie J.M. — Fields and Galois Theory | 140 |
| Moskowitz M.A. — Adventures in mathematics | 66 |
| Moh T.T. — Algebra | 23, 322 |
| Kirillov A.A., Gvishiani A.D., McFaden H.H. — Theorems and Problems in Functional Analysis | 38 |
| Loomis L.H., Sternberg S. — Advanced calculus | 121 |
| Lane S.M. — Mathematics, form and function | 197 |
| Hirsch M.W., Smale S. — Differential Equations, Dynamical Systems, and Linear Algebra | 77 |
| Dauns J. — A Concrete Approach to Division Rings | 8, 44—45 |
| Cloud M.J., Drachman B.C. — Inequalities: with applications to engineering | 58, 62 |
| Mandl F. — Quantum mechanics | 1, 4, 5, 9, 12 |
| Howes N.R — Modern Analysis and Topology | 341 |
| Swinnerton-Dyer H.P.F. — A brief guide to algebraic number theory | 121 |
| Weil A. — Number theory for beginners | 61 |
| Bear H.S. — A Primer of Lebesgue Integration | 19, 153, 156 |
| Kanwal R.P. — Linear Integral Equations: Theory and Techniques | 6, 133 |
| Lipschutz S., Lipson M.L. — Schaum's outline of theory and problems of discrete mathematics | 103 |
| Fuzhen Zhang — Matrix theory: basic results and techniques | 23 |
| Ðàäèîðåëåéíàÿ ñòàíöèÿ òèïà Ð-414. Òåõíè÷åñêîå îïèñàíèå. Êíèãà âòîðàÿ | 92 |
| Cvitanovic P., Artuso R., Dahlqvist P. — Classical and quantum chaos | 77 |
| Strang G. — Introduction to Applied Mathematics | 732 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 69, 190, 396 |
| Vilenkin N.Ja., Klimyk A.U. — Representation of Lie Groups and Special Functions: Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms | 25 |
| Schutz B.F. — A first course in general relativity | 343 |
| Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 14, 411 |
| Robinson S.M. — Convexity and Monotonicity in Finite-Dimensional Spaces | 4 |
| Kelley J., Namioka I. — Linear Topological Spaces | 16 |
| Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 7 |
| Intriligator M.D. — Mathematical optimization and economic theory | 460 |
| Hille E., Phillips R.S. — Functional Analysis and Semi-Groups | 16 |
| Suppes P.(ed.) — Handbook of Proof Theory.Studies in logic the foundations of mathematics.Volume 137. | 242 |
| Bates D.R. — Quantum Theory. I. Elements | 14 |
| Streater R.F. — Statistical Dynamics: A Stochastic Approach to Nonequilibrium Thermodynamics | 18, 24, 35, 39, 139, 143 |
| Schiff L.I. — Quantum Mechanics | 162 |
| Adler S.L. — Quaternionic Quantum Mechanics and Quantum Fields | see "Quaternion", "Hilbert space" |
| Herstein I.N. — Topics in algebra | 193 |
| Niven I., Zuckerman H.S. — An Introduction to the Theory of Numbers | 12, 188 |
| Usmani R.A. — Applied Linear Algebra | 22 |
| Cohen G.L. — A Course in Modern Analysis and Its Applications | 175, 256 |
| Todorov I.T. — Analytic properties of Feynman diagrams in quantum field theory | 53—54 |
| Zeidler E. — Oxford User's Guide to Mathematics | 719 |
| Pier J.-P. — Mathematical Analysis during the 20th Century | 87 |
| Pan G.W. — Wavelets in Electromagnetics and Device Modeling | 1, 2, 7—14, 18, 55, 72, 100, 350, 457 |
| Collatz L. — Functional analysis and numerical mathematics | 30, 34 |
| Schouten J.A. — Tensor Analysis for Physicists | 243 |
| Lemm J.M., Meurant G. — Computer Solution of Large Linear Systems | 4, 5, 7, 14—16, 31, 242, 256, 275, 282, 283, 296, 300, 307, 309, 310, 318, 331, 333, 334, 345—347, 351, 353, 354, 356, 361, 363, 364, 368, 372, 379, 380, 383, 386, 388, 391, 424, 450, 451, 464, 504, 505, 571 |
| Vidyasagar M. — Nonlinear systems analysis | 9 |
| Margalef-Roig J., Outerelo Dominguez E. — Differential topology | 1 |
| Sakurai J.J. — Modern quantum mechanics | 14 |
| Librescu L., Song O. — Thin-Walled Composite Beams:Theory and Application | 115, 487 |
| Librescu L., Song O. — Thin-Walled Composite Beams:Theory and Application | 115, 487 |
| Treves F. — Topological Vector Spaces, Distributions And Kernels | 59 |
| Knarr N. — Translation Planes: Foundations and Construction Principles | 33, 38, 45, 95 |
| Constantinescu F., Magyari E. — Problems in quantum mechanics | 1 |
| Good I.J. — Information, Weight of Evidence. the Singularity Between Probability Measures and Signal Detection | 83 |
| Lee A. — Mathematics Applied to Continuum Mechanics | 509 |
| Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 1 |
| John F. — Partial Differential Equations | 117, 118 |
| Swinnerton-Dyer H. P. F., Swinnerton-Dyer P. — A brief guide to algebraic number threory | 121 |
| Higham D.J., Higham N.J. — MATLAB guide | 33—34, 121—122, 306, 351t |
| James I.M. (ed.) — Topological and Uniform Spaces | 33 |
| Mathiak K. — Valuations of Skew Fields and Projective Hjelmslev Spaces | 51 |
| Abhyankar S.S. — Lectures on Algebra Volume 1 | 642 |
| De Barra G — Measure theory and integration | 109, 110, 148, 172, 226, 227 |
| Rice J. — Matrix computations and mathematical software | 6, 11 |
| Fayolle G., Iasnogorodski R., Malyshev V. — Random Walks in the Quarter-Plane: Algebraic Methods, Boundary Value Problems and Applications (Stochastic Modelling and Applied Probability) | 58, 61 |
| Robertson A.P., Robertson W. — Topological vector spaces | 13 |
| Ruelle D. — Elements of Differentiable Dynamics and Bifurcation Theory | 135 |
| Wallach N.R. — Real Reductive Groups II | 71 |
| Bell E.T. — Mathematics: Queen and Servant of Science | 244 |
| Lions J-L., Dautray R. — Mathematical Analysis and Numerical Methods for Science and Technology: Volume 2: Functional and Variational Methods | 270 |
| Bäck T. — Evolutionary Algorithms in Theory and Practice | 36 |
| Hammerlin G., Hoffmann K.-H., Schumaker L.L. — Numerical Mathematics | 68 |
| Maclane S. — Homology | 110 |
| Blanchard P., Bruening E. — Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Method | 8 |
| Schutz B. — Geometrical Methods in Mathematical Physics | 14
Norm, Euclidean |
| Balser W. — Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations | 216 292 |
| Klingenberg W. — A Course in Differential Geometry (Graduate Texts in Mathematics) | 1 |
| Marcus M., Minc H. — Introduction to Linear Algebra | 31 |
| Cheney W. — Analysis for Applied Mathematics | 3 |
| Morrison T.M. — Functional Analysis: An Introduction to Banach Space Theory | 9, 17—18 |
| Sagle A. A. — Introduction to Lie groups and Lie algebras | 3, 194 |
| Stakgold I. — Boundary value problems of mathematical physics | 105, 117 |
| Golan J.S. — The Linear Algebra a Beginning Graduate Student Ought to Know (Texts in the Mathematical Sciences) | 305, 309 |
| Conger D. — Physics modelling for game programming | 51, 61—62, 185, 314—315 |
| Abramovich Y., Aliprantis C. — An Invitation to Operator Theory (Graduate Studies in Mathematics, V. 50) | 2 |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 26, 58 |
| Moiseiwitsch B.L. — Integral Equations | 69, 70, 71, 74, 87, 89 |
| Mac Lane S. — Mathematics: Form and Function | 197 |
| BertsekasD., Tsitsiklis J. — Neuro-Dynamic Programming (Optimization and Neural Computation Series, 3) | 459 |
| Óîòêèíñ Ä. — Îñíîâû ìàòðè÷íûõ âû÷èñëåíèé | 294 |
| Ãîâîðóõèí Â., Öèáóëèí Á. — Êîìïüþòåð â ìàòåìàòè÷åñêîì èññëåäîâàíèè | 140 |
| Ãîâîðóõèí Â., Öèáóëèí Á. — Êîìïüþòåð â ìàòåìàòè÷åñêîì èññëåäîâàíèè - Maple, Matlab, LaTex | 140 |
| Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 63 |
| Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 63 |
| Lorentz G.G. — Bernstein Polynomials | 52, 54 |
| Lin C., Segel L. — Mathematics applied to deterministic problems in the natural sciences | 63 |
| Isham C. — Modern Differential Geometry for Physicists | 8 |
| Neusel M.D. — Invariant Theory of Finite Groups | 79 |
| Beckenbach E., Bellman R. — Inequalities (Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge) | 16, 28 |
| Leader S. — The Kurzweil-Henstock integral and its differentials | 327, 328 |
| Vretblad A. — Fourier Analysis and Its Applications (Graduate Texts in Mathematics) | 107, 115 |
| Truss J.K. — Foundations of Mathematical Analysis | 123 |
| Chvatal V. — Linear programming | 218, 269 |
| D'Angelo J.P. — Inequalities from Complex Analysis (Carus Mathematical Monographs) | 35, 36 |
| Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | xviii, 12, 14, 17, 31, 44, 48, 139, 168, 173, 181, 204, 210, 228 |
| Truss J. — Foundations of mathematical analysis | 123 |
| J. K. Truss — Foundations of mathematical analysis MCet | 123 |
| Souza P., Silva J., Souza P. — Berkeley Problems in Mathematics | 30 |
| Souza P., Silva J., Souza P. — Berkeley Problems in Mathematics | 30 |