|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Love R., Morris J., Wesolowsky G. — Facilities location |
|
|
Ïðåäìåòíûé óêàçàòåëü |
distance, definition 6 11
distance, models 23—27 86—89 113—117
distance, properties 23
Absolute deviations 258
Adcock, R.J. 73
Addends 119
Aggregation of demand points 196—199 212—213
Aikens, C.H. 224
Aly, A.A. 73 169
Ambulance station location 175
Antipode 38 41
Area destinations 43—51
Armour, G.C. 254
Balinski, M.L. 95 223
Barber, G.M. 51
Baumol, W.J. 95 223
Bazaraa, M.S. 251 254
Beckenbach, E.F. 110
Belardo, S. 223
Bellman, R. 110
Benders decomposition method 203—212 224
Bergman,' L. 223
Bias, directional 257
Bilde, O. 223
Bindschedler, A.E. 31
Bjoerck, A. 31
Bos, H.D. 169
Bounds, bound (lower) for solving the quadratic assignment problem 233—236
Bounds, bound (lower) on objective function of location models 16—17 34—35 89 93 119 122 134 141 205 225
Bounds, bounds (upper) on distances in location models 131—132 182
Brady — Rosenthal Algorithm 119
Brady, S.D. 113 119 140
Branch-and-bound, solution of dynamic location problem 64—66
Branch-and-bound,solution of quadratic assignment problem 231—242
Broeckx, F. 254
Buffa, E.S. 254
Burkard, R.E. 254
Burness, R.C. 274
Cabot, A.V. 92 109
Calami, P.H. 93
Callahan, L.G. 229
Center-of-gravity 4—5 15 17
Chafe, P.M. 92
Chaiken, J.M. 178
Chained facilities 87
Chalmet, L.G. 169
Chandrasekaran, R. 115 117 139
Charalambous, C. 31 92 122 140
Charnes, A. 92
Chatelon, J.A. 136 140
Chen, R. 169
Christofides, N. 9 274
Church, R.L. 182 183 184 185 223
Circles, covering 118
Circles, great 268—271
Circles, market area 163
Circles, unit 257—258 265
Concavity of location-allocation problem 158
Conn, A.R. 93
Connors, M. 254
Constraints on distances in minimax location problems 131—132
Constraints on locations in rectangular distance location problems 83
Constraints, dual formulation of constrained problems 101—102 106—107
Continuous existing facilities 43—51 162—164
Continuous location-allocation 162—164
contours 131 269
Converse, A.O. 146
Convex sets, convex hull 15—16 88 118 153—157
Convex sets, convex polygon 16 115
Convex sets, convex set on sphere 39
Convexity (of functions), distance function 23—24 33
Convexity (of functions), definition 13 32 39
Convexity (of functions), empirical metrics 266—268
Convexity (of functions), Euclidean distance function 14 31
Convexity (of functions), hyperbolic approximation 25
Convexity (of functions), rectangular distance function 18
Convexity (of functions), spherical distance 39 73—74
Cooper, L. 73 169 273
Cornuejols, G. 223
Cost structures and capacity restrictions 193 195
CRAFT heuristic for floor layout problems 242—244 251
Criterion for locating at an existing facility location 14 24 40
Crowston, W.B. 254
Cutting plane procedure 177
Dahlquist, G. 31
Data considerations 187—188 202—203
Dearing, P.M. 135 140
Decomposition method to solve dual problem 107
Deviations, absolute and squared 258—259
Direction vectors, interpretations of dual solutions as 100
Directional bias 257—258
Discontinuities in the derivatives of the ,distance function 87
Distribution centers 143—145 200
Dohrn, P.J. 274
Domschke, W. 9
Donnay, J.D.H. 74
Dowling, P.D. 31 93 263
Drexl, A. 9
Drezner — Wesolowsky Algorithm 134
Drezner, Z. 31 35 43 69 73 133 134 140 152 169
Duality, minimax dual 129—131
Duality, multi-facility , dual 104—107
Duality, multi-facility Euclidean dual 102—104
Duality, single-facility Euclidean dual 95—101
Duality, solution methods 107
Duality, structural properties of locationllocation problem 158
DUALOC 189—193
Dynamic location 60—66
Eddison, R.T. 9
Edge descent method for solving multiacility problems 83—86
Efficient point 169
Efroymson, M.A. 223
Eilon, S. 9 274
Elshafei, A.N. 227 251 254
Elzinga — Heam Algorithm 118 123
Elzinga, J. 9 31 118 123 140
Empirical studies (of distance functions) 258—265
Erlenkotter, D. 73 190 193 223
Euclidean distances, dual models 95—104
Euclidean distances, location models 12—18 113—115 117125
Euclidean metric 257
Eyster, J.W. 31 92
Fire engine travel time 174 256
Fire station location 173—178
Fisher, M.L. 223
Floor layout-quadratic assignment problem, branch-and-bound solution method 231—242
Floor layout-quadratic assignment problem, Hall Quadratic Placement Algorithm 245—251
Floor layout-quadratic assignment problem, heuristic procedures--CRAFT and HC 63—66 242—244 251
Francis, R.L. 9 31 92 109 135 137 140 169
Gavett, J.W. 254
Gelders, L.F. 169
Geoffrion, A.M. 109 158 162 169 178 187 195 199 206 223 224
Gilmore, P.C. 254
Ginsburgh, V. 255
Goldstein, J.M. 9
Gomory, R.E. 223
Graphics, exclusion property 156
Graphics, inclusion property 153—155
Graphics, interactive computer graphics 118 133
Graves, G.W. 199 206 224 254
Great circle metrics 38 268—271
Haldane, J.B.S. 73
Hall Quadratic Placement Algorithm 245251
Hall, K.M. 245 254
Hamburger, M.J. 199 223
Handler, G.Y. 169
Hansen, P. 9 169 255 273
Hardy, G.H. 232
Harrald, J. 223
Hausner, J. 174
| Hearn, D.W. 9 31 118 123 136 140
Hendrick, T.E. 174
Heragu, S.S. 254
Hertz, D.B. 9
Heuristics for floor layout, quadratic assignment problems 242—244
Heuristics for set-covering problems 177—178
Heuristics for site-generating location-allocation problems 157—162
Hillier, F.S. 254
Hoelder's inequality 110
Hogan, K. 223
Homogeneity property of a norm 264
Hull, convex hull 15—16 118 153 157
Hull, rectangular hull 153—154 169—170
Hurter, A.P., Jr. 109 169
Hyperbolic approximation 24 31 87
Identity property of a metric 255
Identity property of a norm 264
Ignall, E.J. 178
Infinity, one-infinity norm 264—266
Instrument panel layout 229
Intercity road distances 262
Johnson, E.L. 202
Juel — Love Algorithm 86
Juel, H. 24 31 92 109 169
Katz, I.N. 31 73
Kaufman, L. 254
Kermack, K.A. 73
Khumawala, B.M. 190 223
Kirca, O. 254
Kleindorfer, G.B. 255
Kochenberger, G.A. 255
Kolen, A.J.W. 138 169
Kolesar — Walker Heuristic 177
Kotesar, P. 174 175 177
Kraemer, S.A. 109 140
Krarup, J. 223
Kuehn, A.A. 199 223
Kuenne, R.E. 169 274
Kuhn, H.W. 9 31 109
Kusiak, A. 254
Lagrange multipliers 99 110 121 246 247
Lagrangian function 110 246 247
Land, A.H. 254
Laporte, G. 274
Large region metrics 268—271
Larson, R.C. 178
Latitude 38 269
Lawlet, E.L. 254
Lawson — Charalambous Algorithm 122125
Lawson, C.L. 122 125 140
layout See Floor layout-quadratic assignment problem
Leamer, E.E. 169
Lee, S. 206
Linear facility location 51—60
Linear programming, minimax location, rectangular distances 126—131
Linear programming, minimum sum location, rectangular distances 80—83
Linear programming, one-infinity norm models 265—266
Linear programming, relaxation of distribution model 188—189
Linear programming, relaxation of set covering model 177
Littlewood, J.E. 232
Litwhiler, D.W. 73
Location-allocation, site-generating, continuous existing facilities 162—164
Location-allocation, site-generating, heuristics for solving 157—162
Location-allocation, site-generating, hull properties of 153—157 169 170
Location-allocation, site-generating, one-dimensional problem solved by dynamic programming 146—150
Location-allocation, site-generating, perturbation solution scheme 158
Location-allocation, site-generating, solved as m-median problem 152—156
Location-allocation, site-generating, structural properties 158
Location-allocation, site-generating, two-facility with Euclidean distances 150—152
Location-allocation, site-selecting, cost structures and capacity restrictions 193—196
Location-allocation, site-selecting, data considerations 187—188 202—203
Location-allocation, site-selecting, demand point aggregation issues 196—199 212—213
Location-allocation, site-selecting, DUALOC 189—193
Location-allocation, site-selecting, model representation and linear programming relaxation 188—189
Location-allocation, site-selecting, set-covering models for site selection 173—185
Location-allocation, site-selecting, single-stage, single-commodity distribution system design 186—199
Location-allocation, site-selecting, solution by Benders decomposition 203—212 224—226
Location-allocation, site-selecting, two-stage, multi-commodity distribution system design 199—212
longitude 38 269
Love, R.F. 24 31 73 78 92 93 97 109 140 169 254 256 258 263 273
Lowe, T.J. 136 169
m-median problem 155—156 188 223
MacKinnon, R.D. 51
Mairs, T.G. 202 256
Manne, A.S. 223
Marucheck, A.S. 169
Mavrides, L.P. 223
Maximal covering location 182—183
Maximin problem 114 133—135
McGinnis, L.F. 9
McGrew, M.C. 167
Mercator projection 269—271
Metrics 255—271. See also Travel distances
Miehle, W. 92
Minieka, E. 179 223
Minimax location, contours 131—132
Minimax location, convex programming approach 132
Minimax location, dual problem 129—131
Minimax location, Euclidean distances 117—125
Minimax location, maximin location 133—135
Minimax location, multi-facility 120—125
Minimax location, rectangular distances 125—131
Minimax location, set covering 178—181
Minimax location, upper bounds on distances and location constraints 131
Minkowski inequality 34 93
Modeling philosophy 99
Moore, J.M. 31
Morris, J.G. 31 73 92 93 97 140 169 223 256 258 273
Multi-facility location, , distance minimum sum model 80—86
Multi-facility location, minimax model 120—132
Multi-facility location, properties and solution methods 80—90
Multi-facility location, rectangular distance minimum sum model 80—86
Nair, K.P.K. 115 117 139
Nemhauser, G.L. 223
Nobert, Y. 274
Nonlinear programming, formulation of minimax location problems 116—117 132
Nonlinear programming, solution of dual problem 100 107
Nonlinear programming, solution of multi-facility minimum sum problems 89
Norback, J.P. 73
Norm 264
Norm, one-infinity 264—266
Nugent, C.E. 254
O'Kelly, M.E. 169
Odoni, A.R. 178
One-infinity norm 264—266
Ostresh, L.M., Jr. 31 92 146 169
Pair exchanging heuristic See CRAFT heuristic for floor layout problems
Parameters, of distance functions 258—265
Pardalos, P.M. 169
Pearson, K. 73
Peeters, D. 9 273
Pelletier, P. 274
Perreur, J. 273
Perturbation function 158
Pierce, J.F. 254
Pintelon, L.M. 169
Planchart, A. 109
Plane, D.R. 174
Plyter, N.V. 254
Positivity property of a metric 255
Positivity property of a norm 264
Powers, R.F. 187
Pritsker, A.A.B. 92
Probabilistic destination location 66—69
Projection, Mercator 269—271
Pruzan, P.M. 223
Quadratic assignment problem See Floor layout-quadratic assignment problem
Quadratic equivalence 245—246
Quadratic placement problem 245—251
Quasilinearization 96—107 109
|
|
|
Ðåêëàìà |
|
|
|