Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Love R., Morris J., Wesolowsky G. — Facilities location
Love R., Morris J., Wesolowsky G. — Facilities location



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Facilities location

Àâòîðû: Love R., Morris J., Wesolowsky G.

ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1988

Êîëè÷åñòâî ñòðàíèö: 296

Äîáàâëåíà â êàòàëîã: 31.05.2006

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$\ell_p$ distance, definition      6 11
$\ell_p$ distance, models      23—27 86—89 113—117
$\ell_p$ distance, properties      23
Absolute deviations      258
Adcock, R.J.      73
Addends      119
Aggregation of demand points      196—199 212—213
Aikens, C.H.      224
Aly, A.A.      73 169
Ambulance station location      175
Antipode      38 41
Area destinations      43—51
Armour, G.C.      254
Balinski, M.L.      95 223
Barber, G.M.      51
Baumol, W.J.      95 223
Bazaraa, M.S.      251 254
Beckenbach, E.F.      110
Belardo, S.      223
Bellman, R.      110
Benders decomposition method      203—212 224
Bergman,' L.      223
Bias, directional      257
Bilde, O.      223
Bindschedler, A.E.      31
Bjoerck, A.      31
Bos, H.D.      169
Bounds, bound (lower) for solving the quadratic assignment problem      233—236
Bounds, bound (lower) on objective function of location models      16—17 34—35 89 93 119 122 134 141 205 225
Bounds, bounds (upper) on distances in location models      131—132 182
Brady — Rosenthal Algorithm      119
Brady, S.D.      113 119 140
Branch-and-bound, solution of dynamic location problem      64—66
Branch-and-bound,solution of quadratic assignment problem      231—242
Broeckx, F.      254
Buffa, E.S.      254
Burkard, R.E.      254
Burness, R.C.      274
Cabot, A.V.      92 109
Calami, P.H.      93
Callahan, L.G.      229
Center-of-gravity      4—5 15 17
Chafe, P.M.      92
Chaiken, J.M.      178
Chained facilities      87
Chalmet, L.G.      169
Chandrasekaran, R.      115 117 139
Charalambous, C.      31 92 122 140
Charnes, A.      92
Chatelon, J.A.      136 140
Chen, R.      169
Christofides, N.      9 274
Church, R.L.      182 183 184 185 223
Circles, covering      118
Circles, great      268—271
Circles, market area      163
Circles, unit      257—258 265
Concavity of location-allocation problem      158
Conn, A.R.      93
Connors, M.      254
Constraints on distances in minimax location problems      131—132
Constraints on locations in rectangular distance location problems      83
Constraints, dual formulation of constrained problems      101—102 106—107
Continuous existing facilities      43—51 162—164
Continuous location-allocation      162—164
contours      131 269
Converse, A.O.      146
Convex sets, convex hull      15—16 88 118 153—157
Convex sets, convex polygon      16 115
Convex sets, convex set on sphere      39
Convexity (of functions), $\ell_p$ distance function      23—24 33
Convexity (of functions), definition      13 32 39
Convexity (of functions), empirical metrics      266—268
Convexity (of functions), Euclidean distance function      14 31
Convexity (of functions), hyperbolic approximation      25
Convexity (of functions), rectangular distance function      18
Convexity (of functions), spherical distance      39 73—74
Cooper, L.      73 169 273
Cornuejols, G.      223
Cost structures and capacity restrictions      193 195
CRAFT heuristic for floor layout problems      242—244 251
Criterion for locating at an existing facility location      14 24 40
Crowston, W.B.      254
Cutting plane procedure      177
Dahlquist, G.      31
Data considerations      187—188 202—203
Dearing, P.M.      135 140
Decomposition method to solve dual problem      107
Deviations, absolute and squared      258—259
Direction vectors, interpretations of dual solutions as      100
Directional bias      257—258
Discontinuities in the derivatives of the $\ell_p$,distance function      87
Distribution centers      143—145 200
Dohrn, P.J.      274
Domschke, W.      9
Donnay, J.D.H.      74
Dowling, P.D.      31 93 263
Drexl, A.      9
Drezner — Wesolowsky Algorithm      134
Drezner, Z.      31 35 43 69 73 133 134 140 152 169
Duality, minimax dual      129—131
Duality, multi-facility $\ell_p$, dual      104—107
Duality, multi-facility Euclidean dual      102—104
Duality, single-facility Euclidean dual      95—101
Duality, solution methods      107
Duality, structural properties of locationllocation problem      158
DUALOC      189—193
Dynamic location      60—66
Eddison, R.T.      9
Edge descent method for solving multiacility problems      83—86
Efficient point      169
Efroymson, M.A.      223
Eilon, S.      9 274
Elshafei, A.N.      227 251 254
Elzinga — Heam Algorithm      118 123
Elzinga, J.      9 31 118 123 140
Empirical studies (of distance functions)      258—265
Erlenkotter, D.      73 190 193 223
Euclidean distances, dual models      95—104
Euclidean distances, location models      12—18 113—115 117125
Euclidean metric      257
Eyster, J.W.      31 92
Fire engine travel time      174 256
Fire station location      173—178
Fisher, M.L.      223
Floor layout-quadratic assignment problem, branch-and-bound solution method      231—242
Floor layout-quadratic assignment problem, Hall Quadratic Placement Algorithm      245—251
Floor layout-quadratic assignment problem, heuristic procedures--CRAFT and HC      63—66 242—244 251
Francis, R.L.      9 31 92 109 135 137 140 169
Gavett, J.W.      254
Gelders, L.F.      169
Geoffrion, A.M.      109 158 162 169 178 187 195 199 206 223 224
Gilmore, P.C.      254
Ginsburgh, V.      255
Goldstein, J.M.      9
Gomory, R.E.      223
Graphics, exclusion property      156
Graphics, inclusion property      153—155
Graphics, interactive computer graphics      118 133
Graves, G.W.      199 206 224 254
Great circle metrics      38 268—271
Haldane, J.B.S.      73
Hall Quadratic Placement Algorithm      245251
Hall, K.M.      245 254
Hamburger, M.J.      199 223
Handler, G.Y.      169
Hansen, P.      9 169 255 273
Hardy, G.H.      232
Harrald, J.      223
Hausner, J.      174
Hearn, D.W.      9 31 118 123 136 140
Hendrick, T.E.      174
Heragu, S.S.      254
Hertz, D.B.      9
Heuristics for floor layout, quadratic assignment problems      242—244
Heuristics for set-covering problems      177—178
Heuristics for site-generating location-allocation problems      157—162
Hillier, F.S.      254
Hoelder's inequality      110
Hogan, K.      223
Homogeneity property of a norm      264
Hull, convex hull      15—16 118 153 157
Hull, rectangular hull      153—154 169—170
Hurter, A.P., Jr.      109 169
Hyperbolic approximation      24 31 87
Identity property of a metric      255
Identity property of a norm      264
Ignall, E.J.      178
Infinity, one-infinity norm      264—266
Instrument panel layout      229
Intercity road distances      262
Johnson, E.L.      202
Juel — Love Algorithm      86
Juel, H.      24 31 92 109 169
Katz, I.N.      31 73
Kaufman, L.      254
Kermack, K.A.      73
Khumawala, B.M.      190 223
Kirca, O.      254
Kleindorfer, G.B.      255
Kochenberger, G.A.      255
Kolen, A.J.W.      138 169
Kolesar — Walker Heuristic      177
Kotesar, P.      174 175 177
Kraemer, S.A.      109 140
Krarup, J.      223
Kuehn, A.A.      199 223
Kuenne, R.E.      169 274
Kuhn, H.W.      9 31 109
Kusiak, A.      254
Lagrange multipliers      99 110 121 246 247
Lagrangian function      110 246 247
Land, A.H.      254
Laporte, G.      274
Large region metrics      268—271
Larson, R.C.      178
Latitude      38 269
Lawlet, E.L.      254
Lawson — Charalambous Algorithm      122125
Lawson, C.L.      122 125 140
layout      See Floor layout-quadratic assignment problem
Leamer, E.E.      169
Lee, S.      206
Linear facility location      51—60
Linear programming, minimax location, rectangular distances      126—131
Linear programming, minimum sum location, rectangular distances      80—83
Linear programming, one-infinity norm models      265—266
Linear programming, relaxation of distribution model      188—189
Linear programming, relaxation of set covering model      177
Littlewood, J.E.      232
Litwhiler, D.W.      73
Location-allocation, site-generating, continuous existing facilities      162—164
Location-allocation, site-generating, heuristics for solving      157—162
Location-allocation, site-generating, hull properties of      153—157 169 170
Location-allocation, site-generating, one-dimensional problem solved by dynamic programming      146—150
Location-allocation, site-generating, perturbation solution scheme      158
Location-allocation, site-generating, solved as m-median problem      152—156
Location-allocation, site-generating, structural properties      158
Location-allocation, site-generating, two-facility with Euclidean distances      150—152
Location-allocation, site-selecting, cost structures and capacity restrictions      193—196
Location-allocation, site-selecting, data considerations      187—188 202—203
Location-allocation, site-selecting, demand point aggregation issues      196—199 212—213
Location-allocation, site-selecting, DUALOC      189—193
Location-allocation, site-selecting, model representation and linear programming relaxation      188—189
Location-allocation, site-selecting, set-covering models for site selection      173—185
Location-allocation, site-selecting, single-stage, single-commodity distribution system design      186—199
Location-allocation, site-selecting, solution by Benders decomposition      203—212 224—226
Location-allocation, site-selecting, two-stage, multi-commodity distribution system design      199—212
longitude      38 269
Love, R.F.      24 31 73 78 92 93 97 109 140 169 254 256 258 263 273
Lowe, T.J.      136 169
m-median problem      155—156 188 223
MacKinnon, R.D.      51
Mairs, T.G.      202 256
Manne, A.S.      223
Marucheck, A.S.      169
Mavrides, L.P.      223
Maximal covering location      182—183
Maximin problem      114 133—135
McGinnis, L.F.      9
McGrew, M.C.      167
Mercator projection      269—271
Metrics      255—271. See also Travel distances
Miehle, W.      92
Minieka, E.      179 223
Minimax location, contours      131—132
Minimax location, convex programming approach      132
Minimax location, dual problem      129—131
Minimax location, Euclidean distances      117—125
Minimax location, maximin location      133—135
Minimax location, multi-facility      120—125
Minimax location, rectangular distances      125—131
Minimax location, set covering      178—181
Minimax location, upper bounds on distances and location constraints      131
Minkowski inequality      34 93
Modeling philosophy      99
Moore, J.M.      31
Morris, J.G.      31 73 92 93 97 140 169 223 256 258 273
Multi-facility location, $\ell_p$, distance minimum sum model      80—86
Multi-facility location, minimax model      120—132
Multi-facility location, properties and solution methods      80—90
Multi-facility location, rectangular distance minimum sum model      80—86
Nair, K.P.K.      115 117 139
Nemhauser, G.L.      223
Nobert, Y.      274
Nonlinear programming, formulation of minimax location problems      116—117 132
Nonlinear programming, solution of dual problem      100 107
Nonlinear programming, solution of multi-facility minimum sum problems      89
Norback, J.P.      73
Norm      264
Norm, one-infinity      264—266
Nugent, C.E.      254
O'Kelly, M.E.      169
Odoni, A.R.      178
One-infinity norm      264—266
Ostresh, L.M., Jr.      31 92 146 169
Pair exchanging heuristic      See CRAFT heuristic for floor layout problems
Parameters, of distance functions      258—265
Pardalos, P.M.      169
Pearson, K.      73
Peeters, D.      9 273
Pelletier, P.      274
Perreur, J.      273
Perturbation function      158
Pierce, J.F.      254
Pintelon, L.M.      169
Planchart, A.      109
Plane, D.R.      174
Plyter, N.V.      254
Positivity property of a metric      255
Positivity property of a norm      264
Powers, R.F.      187
Pritsker, A.A.B.      92
Probabilistic destination location      66—69
Projection, Mercator      269—271
Pruzan, P.M.      223
Quadratic assignment problem      See Floor layout-quadratic assignment problem
Quadratic equivalence      245—246
Quadratic placement problem      245—251
Quasilinearization      96—107 109
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå