Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Logan J.D. — Invariant Variational Principles
Logan J.D. — Invariant Variational Principles



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Invariant Variational Principles

Àâòîð: Logan J.D.

ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1977

Êîëè÷åñòâî ñòðàíèö: 172

Äîáàâëåíà â êàòàëîã: 02.07.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Absolute invariance of higher-order integrals      117—118 122
Absolute invariance of multiple integrals      64
Absolute invariance of single integrals      30—34
action      11
Action integral for dynamical systems      12
Action integral for electrodynamics      104
Action integral for multiple integral problems      17 113
Action integral for physical fields      92
Action integral for single integral problems      5 113
Adjoint operator      159
Admissible function      1
Angular momentum tensor      96
Arclength      33 151
Brachistochrone problem      26
Canonical momentum      37 38 73 121
Center of mass      46 47
Configuration space      10
Conformal factor      133
Conformal invariance      158—161
Conformal point transformation      132
Conformal transformation of metric tensor      133
Conservation law      22 37 70—74
Conservation of angular momentum      44 97
Conservation of energy      37—38 42 96—97 100 107 109 120—121
Conservation of linear momentum      42
contravariance      79
Covariance      79
Covariance, conformal      145—147
Degree of contravariance      79
Degree of contravariance of covariance      79
Dilation      131 135 139—140 146
Dilation, infinitesimal generators for      140
Dilation, invariance under      141—143
Divergence theorem      16
Divergence-invariance      34
Divergence-invariance for n-body problem      44 45
Dual vector space      79 80
Electric field intensity      99
electromagnetic field      93 98—104 107—109 146—147 160
Electromagnetic field, tensor      103
Electromagnetic potential      see “Four-potential”
Emden’s equation      52
Energy      see “Conservation of energy”
Energy, electric      99
Energy, magnetic      99
Energy-momentum tensor      108
Euler equations      see “Euler — Lagrange equations”
Euler expressions for multiple integrals      21
Euler expressions for second-order problems      115 119 124
Euler expressions for single integrals      10 36 159 161
Euler — Lagrange equations for dynamical systems      20
Euler — Lagrange equations for higher-order problems      128
Euler — Lagrange equations for multiple integrals      12
Euler — Lagrange equations for physical fields      92—93
Euler — Lagrange equations for second-order problems      112—117
Euler — Lagrange equations for single integrals      7
Euler — Lagrange expressions      see “Euler expressions”
Euler’s theorem      143
Extremal      8
Extremal surface      21
Fermat’s principle      11 50
Field equations      21 92
Field functions      92
Field, scalar      77 82
Field, tensor      81—82
Field, vector      77
First integrals      8 27 37 120—121
First integrals for n-body problem      39—37
Four-potential      93 101
Functional      1
Fundamental integral      see “Action integral”
Fundamental invariance identities for higher-order problems      128
Fundamental invariance identities for multiple integrals      66
Fundamental invariance identities for second-order problems      118 122
Fundamental invariance identities for single integrals      34 52
Fundamental lemma of calculus of variations for multiple integrals      19
Fundamental lemma of calculus of variations for single integrals      6
Fundamental variational formula      23 162
Galilean invariance      41 77
Galilean transformations      41 76
Gauge transformation      102 160
Generators      29 63
Group, Galilean      41
Group, general Lorentz      85
Group, inhomogeneous Lorentz      86
Group, Poincare      86 88 93
Group, proper Lorentz      86 89
Group, r-parameter local Lie      28
Group, special conformal      138—139
Hamiltonian      37 107
Hamiltonian complex      73
Hamilton’s principle      11 14
Homogeneous function      143
Inertial frame      76
Infinitesimal generator      see “Generators”
Infinitesimal transformation      89
Invariance identities      see “Fundamental invariance identities”
Invariance of action integral      see “Absolute invariance”
Invariance problems      2 22
Invariant      see “Absolute invariance”
Inverse problem      59
Involution      136
Jacobi matrix      78
Jacobian      78
Killing’s equations      55
Killing’s equations, generalized      56
Kinctic energy      II 13
Klein — Gordon equation      92 97 149
Korteweg — de Vries equation      74—75 124
Korteweg — de Vries equation, conservation laws for      74—75 126—127
Lagrange’s equations      see “Euler — Lagrange equations”
Lagrangian      4 11 16
Lagrangian density      92
Lagrangian for area of surface of revolution      9
Lagrangian for brachistochrone problem      26
Lagrangian for central force field      38
Lagrangian for damped harmonic oscillator      56—57
Lagrangian for electromagnetic field      101 104
Lagrangian for harmonic oscillator      12
Lagrangian for Klein — Gordon equation      97
Lagrangian for Korteweg — de Vries equation      125
Lagrangian for n-body problem      13 40
Lagrangian for Plateau’s problem      21
Lagrangian for vibrating rod      116
Lagrangian for wave equation      64
Laplacian operator      92
Liouville’s theorem      136 138
Lorentz condition      102
Lorentz transformation      86
Lorentz transformation, general      84
Lorentz transformation, infinitesimal      90
Lorentz transformation, proper      86
Magnetic deflection      99
Manifold      78
Maupertuis’ principle      11
Maxwell stress tensor      109
Maxwell’s equations      93
Maxwell’s equations in tensor form      104
Maxwell’s equations in vector form      100
Metric tensor      92
Minimum, absolute      1
Minimum, relative      1 3
Minkowski metric      91
n-body problem      13 14 39
Necessary conditions for an extremum      1
Necessary conditions for an extremum for functionals      3
Necessary conditions for an extremum for second-order problems      112—115
Necessary conditions for an extremum, multiple integral problems      20
Necessary conditions for an extremum, single integral problems      7
Noether’s identities      see “Noether’s theorem”
Noether’s theorem      22
Noether’s theorem for higher-order multiple integrals      123
Noether’s theorem for higher-order single integrals      119
Noether’s theorem for infinite continuous groups      158—161
Noether’s theorem for multiple integrals      67
Noether’s theorem for single integrals      36
Norm      2
Norm, weak      4
Normal region      15
Normed linear space      2
Parameter-invariant      150
Pendulum      49—50
Plateau’s problem      21
Poincare group      see “Group”
Poynting vector      100 109
Rotation of plane      29
Rotation, infinitesimal      29 139
Rotation, spatial      41 135
Scalar field      77 82 92 95—98 139—145
Scalar field, conformal invariance identities      140—143
Scalar field, conservation laws for      95—96 144—145
Scalar field, general invariance identities      97—98
Scalar potential      see “Four-potential”
Second Noether theorem      158—161
Smith — Hemholtz invariant      50
Snell’s law      50
Special conformal transformation      138—139
Stationary      8
Sufficient conditions for parameter-invariance      153—155
Summation convention      6
Surface of revolution      9
Tensor operations, contraction      81
Tensor operations, product      80
Tensor operations, raising and lowering indices      82 83
Tensor operations, sum      110
Tensors      79—83
Tensors, rank of      79
Tensors, transformation law for      79
Transformation, r-parameter family      28
Translation, space      41
Translation, space-time      93
Translation, time      41
Variation, first      3
Variation, Gateaux      3
Variation, weak      3
Variational integral      see “Action integral”
Vector field      77 82 92 105—107 145—147
Vector field, conservation laws for      106 145—147
Vector potential      see “Four-potential”
Vector, contravariant      81
Vector, covariant      81
Vector, timelike      109
Velocity transformations      41 76
Wave equation      65 93 111
Weierstrass representation      156—157 161
Zermelo’s condition      155—157
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå