Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Feller W. — Introduction to probability theory and its applications (Volume II)
Feller W. — Introduction to probability theory and its applications (Volume II)



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Introduction to probability theory and its applications (Volume II)

Àâòîð: Feller W.

Àííîòàöèÿ:

Major changes in this edition include the substitution of probabilistic arguments for combinatorial artifices, and the addition of new sections on branching processes, Markov chains, and the De Moivre-Laplace theorem.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 2nd edition

Ãîä èçäàíèÿ: 1971

Êîëè÷åñòâî ñòðàíèö: 669

Äîáàâëåíà â êàòàëîã: 14.09.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Abel summability      627 628 648
Abelian theorems      418 445
Abel’s integral equation      33
Absolute continuity      139 140
Absolute probabilities      207—209
Absolutely fair      210
Absolutely monotone functions      223—224 439 441
Absorbing barriers      340—342 464 477—479
Absorption (physical)      25 31 323
Accidents      57 181
Additive set functions      107
Additive set functions, countably = sigma      108 119 129—130
Age      see “Duration”
Algebra of sets      112—113 116
Algebra of sets, generation of      163
Ambarzumian, V.A.      206 325
Anomalous numbers      63
Arc sine distributions      50
Arc sine distributions and limit theorems      470—473
Arc sine distributions in random walks      417—423
Arithmetic distributions      138 407—408
Arrays, null      177—178 585
arrays, triangular      177—178 216 308—312 583—588 596
Arzela — Ascoli theorem      270
Ascending ladder variables, strict      391
Ascending ladder variables, weak      392—393
Associated random walks      406
Astronomy, applications to      33 172 173—174 206 215 325—326
Asymptotic behavior      521 572
Asymptotic estimates      375—377 410—411
Asymptotic properties of regularly varying functions      279—284
Asymptotically dense      147
Asymptotically negligible      178
Asymptotically unbiased estimators      220
Atomic measures      137—138
Atoms (of measures)      137
Atoms (of measures), under convolutions      147 149 166
Attraction      see “Domain of attraction”
Auto-regressive process      89 96
Bachelier process      see “Brownian motion”
Backward equations      357
Backward equations for diffusion      334 336—337 344
Backward equations for jump processes      327—328 484—487
Backward equations for semi-groups      352 356—357
Backward equations for semi-Markov processes      497
Backward equations of Kolmogorov      327—328
Backward equations, minimal solution of      322 329—331 486
Bad luck      15—17
Baire functions      104—106 109 114 130 305 351
Banach space      257 350 487
Barriers      see “Absorbing barriers” “Boundary “Reflecting
Barucha-Reid, A.T.      656
Baxter, G.      404 424 571 605
Bayes, T.      56
Benes, V.E.      379 656
Benford, F.      63
Bergstroem, H.      581
Bernouilli trials      1 141—142
Bernstein polynomials      222—223
Bernstein polynomials in $R^{2}$      245
Bernstein, S.      79 439
Berry — Esseen theorems      538 542—546 551
Berry, A.C.      531 536 542
Bessel density      502
Bessel functions      58—61 523
Bessel functions and infinite divisibility      177 451 566
Bessel functions and Laplace transforms      437 438 479—482
Bessel functions and related distributions      58—61 149 166
Bessel functions in stochastic processes      58—61 323
Bessel functions, characteristic function of      503
Beta density      50
Beta density in renewal      471
Beta integral      47
Bickel, P.J.      388
Bilateral exponential      49—50 502
Bilateral exponential, characteristic function of      503
Bilateral Laplace transform      434
Billingsley, P.      39 265 343
Binary orbits      33
Binomial random walks      608—609
Birth processes      41 266—267 488—491
Birth processes, bilaterial      491
Birth-and-death processes      479—483 496
Birth-and-death processes and diffusion      496
Birth-and-death processes, busy periods in      482—483
Bivariate normal density      70
Bizley, M.T.L.      420
Blackwell, D.      360 381
Blum, J.R.      287
Bochner integral      455
Bochner, S.      321 347 454 620 622 634 655
Bohl      268
Borel algebra      113 119
Borel algebra, measurable functions      116
Borel set      114 116 117 123 125 130
Borel set, approximation of      115 124
Borel set, convention for      127
Borel — Cantelli      105 317
Botts, T.A.      103
Boudreau, P.E.      196
boundary conditions      337—343 477
Bourbaki, N.      103
Branching processes      244 441 474—475
Brelot, M.      2.44
Brownian motion      99 181 322—349 475—479
Brownian motion in $R^{r}$      175 344
Brownian motion, continuity of paths in      181 332
Brownian motion, first-passage times in      174—175 340 476
Brownian motion, one absorbing barrier      340 477
Brownian motion, subordination of Cauchy process to      348
Brownian motion, two absorbing barriers      341 478
Brownian motion, with elastic force      335
Buehlmann, H.      229
Buffon’s needle problem      61—62
buses      22 55 188
Busy periods      194—195 198—200 473—474 482—483
Campbell’s theorem      179 287 595
Canonical measures      560—565
Cantelli      see “Borel — Cantelli”
Cantor distribution      35—36 141 593
Cantor distribution, convolutions of      146
Cantor, G.      267
Cantor’s diagonal method      267—268
Cap and cup      104
Carleman, T.      227 515
Cauchy distribution      50 64 173 502
Cauchy distribution and random walks      204 618
Cauchy distribution and stability      173 555
Cauchy distribution in $R^{r}$      70—71 73 100 524 594
Cauchy distribution in Brownian motion      175 348
Cauchy distribution, bivariate      524
Cauchy semi-groups      303
Cauchy, A.      172 509
Centering      45 137 584—588
Centering in infinitely divisible distributions      559
Central limit theorem      258—265 287 291 529—530
Central limit theorem and large deviations      548—553
Central limit theorem for densities      533—536
Central limit theorem for equal components      515—518
Central limit theorem in renewal      372
Central limit theorem, applications of      209 529—530
Central limit theorem, expansions related to      531—553
Central limit theorem, with infinite variances      260
Cesaro summability      628 648
Chains, random      206—207
Chains, strength of      9
Chandrasekhar, S.      32
Chapman — Kolmogorov equations      60 334 338 346—347 353 566
Chapman — Kolmogorov equations and semi-groups      351
Chapman — Kolmogorov equations, continuous time      322 486—488
Chapman — Kolmogorov equations, discrete time      98
Chapman — Kolmogorov identity      98
Characteristic exponents of R      170
Characteristic functions      498—526 (see also “Poisson summation”)
Characteristic functions in Rr      521—524
Characteristic functions, derivatives of      565—566
Characteristic functions, factorization of      506 593 631
Characteristic functions, finitely divisible      557
Characteristic functions, infinitely divisible      554—557 560—564
Characteristic functions, logarithms and roots of      554—555
Characteristic functions, periodic      511 626 630 631
Characteristic functions, Taylor development of      514—515
Chebyshev — Hermite polynomials      533
Chebyshev’s inequality      151—152 310 354
Chebyshev’s inequality for martingales      246
Chebyshev’s inequality, generalized      234
Checkerboard partitions      133
Chernoff, H.      287
Chi-square density      48
Choquet, G.      382 593
Chow, Y.S.      360
Chung, K.L.      105 167 231 355 381 483 614 615 655
Circles, covering theorem for      28—29
Circles, densities on      632—633
Circles, distributions on      29 61—64 627
Circles, equidistribution on      268 273
Circles, probability distribution on      274
Coin-tossing      210 211—212 405 417
Coin-tossing and random choice      35
Coincidences      217
Collisions of particles      206 322—323 325
Compactness of triangular arrays      309
Complete monotonicity      224—227 439—442 450 464
Complete monotonicity, abstract      454
Completion of measures      126
Composition of kernels      206
Compound Poisson processes      180—181 305 326
Compound Poisson processes and ruin problems      182—184 198 469—470
Compound Poisson processes and semi-groups      295 299—300
Compound Poisson processes and subordination      348—349
Concave functions      153
Concentration      4 45 137
Concordant functions      210—211 244
Conditional distributions and expectations      71—74 156—159 160—165
Conditional probability      157
Contagion      57—58
Continuity of semi-groups      353 (see also “Fixed discontinuities”)
Continuity theorem      431—433 508
Continuity theorem and Laplace transforms      433
Continuity theorem and quasi-characteristic functions of      557
Continuity theorem and semi-groups      460
Continuity theorem for densities      510
Continuity theorem, characteristic function of      508—509 510
Contractions      350 456
Convergence in norm = strong      257 352
Convergence in probability      253—254
Convergence in the mean square      636
Convergence of densities      252
Convergence of measures      247—252 267—270 284—285
Convergence of moments      251—252 269
Convergence of operators      257 285 352
Convergence, dominated      111
Convergence, notations and principles of      248—251
Convex functions      153—155
Convex functions of martingales      214—215
convex polygons      505
Convolution semi-groups      293—296
Convolutions      143—148 272 278
Convolutions and covering theorems      26—29
Convolutions and Laplace transforms      434—435
Convolutions of densities      7—8 46 71
Convolutions of singular distributions      146
Convolutions on circles      64 143 273—274
Convolutions, definition of      7 8
Convolutions, infinite      265—267 317 592—593
Coordinate variables      4 68
Correlation      68
Countably many intervals      108
Counters for particles      372 (see also “Geiger counters” “Queues”)
Covariance      68
Covariance of processes      88—94 623—626 643—646
Covariance, matrix      82—83
Covering theorems      76 216 469
Covering theorems and convolutions      26—29
Cramer — Levy theorem      525
Cramer, H.      182 403 522 531 542 546 548 552 646 656
Cramer’s estimate for ruin      182 377—378 403 411—412
Cup      104
Dams      195
Darling, D.A.      465
de Finetti, B.      179 230
decision functions      213
Decompositions      570—571
Defective distributions      115 129 130 205
Defective distributions in renewal      187
Degenerate distributions      83 87
Degenerate processes      90—91
Delayed renewal processes      187 368
Delays in traffic      190 380 387 474—475 496
densities      3—6 49—53 66—71 138—143
Densities, notations and conventions for      45—46
Denumberable sample spaces      331—332
Deny, J.      382
Derivatives and Laplace transforms      435
Derman, C.      493
Descending ladder variables      393—394
Differences, notation for      221—222
Differential equations, Kolmogorov      483—488
Diffusion processes and birth-and-death processes      496
Diffusion processes in $R^{r}$      332—337 344—345 436 461 464 475—479 496
Diffusion processes in genetics      336—337
Diffusion processes in higher dimensions      344—345
Diffusion processes, with elastic force      335—336
Digits, distribution of      34 63—64
Directing process      347
Directional changes of particles      323
Directions, random      29—33
Directly Riemann integrable functions      362—363
Dirichlet integral      511
Discontinuities      318
Discontinuous semi-groups      305
Discrepancies      see “Empirical distributions”
Discrete distributions      55—58
Distance function for distributions      285
Distribution functions, definition of      3
Doblin, W.      173 592
Doblin’s “Universal laws”      590—592
Domain of attraction      172
Domain of attraction and stable distributions      574—581
Domain of attraction, criteria for      312—316 320 448 574—581
Domain of attraction, normal      581
Domain of attraction, partial      320 568 590—592
Dominated convergence      111
Donsker, M.F.      39 343
Doob, J.L.      103 164 210 244 656
Drift in diffusion      335
Drift in random walks      397 610—611
Duality      394—398 609—610
Duplication formula      64
Duration of birth processes      490
Duration of busy period      473—474 482—483
Duration of dead period      190
Duration of diffusion      341—342
Duration of renewal process      187 216 374—377
Duration, estimates for      377
Dvoretzky, A.      274
Dynkin, E.B.      321 333 472 655
Economics, stable distributions in      175
Edgeworth expansion      535 542
Einstein, Albert Jr.      182 333
1 2 3 4
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå