Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Young R.M. — Excursions in Calculus: An Interplay of the Continuous and the Discrete
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Excursions in Calculus: An Interplay of the Continuous and the Discrete
Àâòîð: Young R.M.
Àííîòàöèÿ: he purpose of this book is to explore the rich and elegant interplay that exists between the two main currents of mathematics, the continuous and the discrete. Such fundamental notions in discrete mathematics as induction, recursion, combinatorics, number theory, discrete probability, and the algorithmic point of view as a unifying principle are continually explored as they interact with traditional calculus.
As the topics and applications will show, much of the material has never been presented in this level. The book is addressed primarily to well-trained calculus students and those who teach them, but it can also serve as a supplement in a traditional calculus course for anyone who wants to see more. The problems, taken for the most part from probability, analysis, and number theory, are an integral part of the text. There are over 400 problems presented in this book.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1992
Êîëè÷åñòâî ñòðàíèö: 408
Äîáàâëåíà â êàòàëîã: 13.04.2008
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
29 93 144 209 213 221 231—238 240 243 250 264 267 270 314 330—332 337 346 349 351—353
3x+1 problem 13
Abel, N.H. 224 231 304 315 357
Absolute convergence 227
Adams, J.A. 285
Adrien, R. 209
AGM see “Arithmetic-geometric mean”
Aitken, R.G. 9
Algorithm Archimedean 243
Algorithm arithmetic-geometric mean 232—233
Algorithm Babylonian 192
Algorithm euclidean 26—29 35 128—130 144
Algorithm Fibonacci search 138
Alternating series 314 330 333—334
Amicable numbers 28
Andrews, G.E. 357
Angle, trisection of 310 328
Apostol, T.M. 348
Arago, M. 354
Archimedes 83 191 310 312
Archimedes Measurement of a Circle 244
Archimedes On Spirals 83
Archimedes Quadrature of the Parabola 310
Arithmetic mean 20 186—195
Arithmetic-geometric mean 231—238
Arithmetical function 219
Arithmetical triangle see “Pascal's triangle”
Asymptotically equal 244 267 302 305
Average see also “Expected value; Function; Mean” 185—245
Axiom of Archimedes 312
Ayoub, R. 352
Bachet's theorem 75
Ball, W.W.R. 24
Barrow, I. 344
Barsky, B.A. 285
Bartels, R.H. 285
Bartok, B. 124
Beatty, J.C. 285
Beatty, S. 156
Bell numbers 167
Bell, E.X. 100 268
Bernoulli numbers 87—94 99 160—161 352 355
Bernoulli polynomials 87—93 99
Bernoulli's inequality 22
Bernoulli, James 78 148 153 231 338 345
Bernoulli, James Ars conjectandi 78 86
Bernoulli, John 231 338 345
Bernoulli, N. 32 160
Bernstein polynomials 283—284
Bernstein, S.N. 275 282
Bertrand's paradox 244
Bertrand's postulate 34 71 306—307
Bezier Spline 284—286
Binet's formula 130 154 160
Binet, J.P.M. 130
Binomial coefficients 20—21 95 98—99 135 283—284 335—336 351
Binomial functions 65—68
Binomial series 255—259
Binomial theorem 21 216
Blumenthal, L.M. 322
Boas, R.P. 10 281 292 345
Bolyai, J. 306
Bombelli, R. 156
Borwein, J.M. and P.B. 234 237
Boscovich's hypothesis 209
Boscovich, R.J. 209
Boyer, C.B. 85 258 311
Bremmer, H. 278
Brent, R.P. 101 237
Brocard's problem 14
Brouncker, W. 144 331
Brousseau, A. 126
Buffon's Needle Problem 230 242
Bussey, W.H. 15
Cantor function 332—333
Cantor set 319—321 323 336
Cantor, G. 319
Cardioid 173
Carmichael numbers 116
Carroll, L. 1 127 309
Cassini's identity 127 138 141
Cassini, J.D. 127
Casting out nines 371
Catalan numbers 259
Catalan's problem 260
Catalan, E.C. 115 137 259
Cauchy kernel 279
Cauchy — Schwarz inequality 202
Cauchy, A.L. 75 188 223 315
Cauchy, A.L. Cours d'analyse 223
Cavalieri's formula 251 255
Cavalieri, B. 83 343
Cayley, A. 172
Central limit theorem 214
Cesaro, E. 135 324 353
Chaitin, G.J. 335
Chambered nautilus 149 151
Channel capacity 133
Characteristic triangle 343
Chebyshev's inequality 204
Chebyshev, P.L. 306
Child, J.M. 339 343—344
Chiliad 304
Chinese remainder theorem 373—375
Chudnovsky, D.V. and G.V. 237
Church, A. 52
Circle arc length of 232
Circle lattice points inside 221—223
Circle quadrature of 251—258 310 314 329
Circle rational points on 44—46 55
Cissoid of Diocles 328
Cohen, G.L. 101
coin tossing 225—230 248 254 263 283
Complex (Gaussian) integers 112
Composite numbers 7
Congruent numbers 369—377
Construction, straightedge and compass 142 310
Continued fractions 143—144 156 331
Contraction 180—181
Convex function 199
Convolution 164
Cox, D.A. 236
Coxeter, H.S.M. 24
Cube, duplication of 187 310 328
Cubes, sum of consecutive 78—81
Cummings, E.E. 1
Curve Bezier spline 284—286
Curve circle 44—46 55 221—223 232 251—258 310 314 329
Curve cissoid of Diodes 328
Curve devil's staircase 332—333
Curve ellipse 263 310
Curve folium of Descartes 56
Curve Gaussian see “Curve normal”
Curve hyperbola 196 245 289—290 310
Curve Koch 323—325 336
Curve lemniscate 231—232
Curve logarithmic spiral 148—153
Curve normal 213 327
Curve parabola 310—314
Curve snowflake see “Curve Koch”
Curve spiral of Archimedes 148 311 328—329
D'Alembert, J. le Rond 114
Davenport, H. 112
Davis, P.J. 219 225 304
de Moivre, A. 130 213 266
De Morgan, A. 15
De Parville, M. 24
Delahaye, J.P. 50
Delta function, Dirac 276—281
Dense 44 46 158
density 291 295—300
Derangement 37 165
Descartes, R. 56 148 344
Devaney, R.L. 183
Devil's staircase 332—333
Dewdney, A.K. 175
Dickson, L.E. 8 28 42 47 100
Dieudonne, J. 180
Difference equation 26 162
Difference operator 72 355
Difference set 336
Dilogarithm 350
Diocles 328
Diophantine equation 50—53
Diophantus of Alexandria 41 76
Diophantus of Alexandria Arithmetica 41 111
Diophantus of Alexandria, Book on Polygonal Numbers 76
Dirac delta function 276—281
Dirac, P.A.M. 276
Dirac, P.A.M., The Principles of Quantum Mechanics 276
Dirichlet's theorem 68 70 109—110
Dirichlet, P.G.Lejeune 104 245 306
Divergent series 223—225 355—356
Divine proportion see “Golden ratio”
Divisors, number of 244—245
Divisors, sum of see also “Pentagonal number theorem” 115
Dorrie, H. 260
Douady, A. 173 175
Dubner, H. 70
Dudley, U. 69
Dynamical system 170
Dyson, E. 318
e 22 33 37 194 204—205 209 213 239—240 243 267 296
Eddington, A.S. 153
Edwards, A.W.E. 78
Edwards, C.H. 196 256 258
Egyptian fractions 295
Elementary function 266 268
Eliot, T.S. 4 368
Elkies, N. 42
ellipse 231—232 263 310
Elliptic integral 231—232 263
Encke, J.F. 306
Equiangular spiral see “Logarithmic spiral”
Eratosthenes, sieve of 12 36 299
Erdos, P. 112 295
Error function 207
Euclid 312
Euclid Elements 27 43 101
Euclidean algorithm 26—29 35 128—130 144
Eudoxus 27
Eudoxus principle of 312 319
Euler -function 36 117
Euler — Maclaurin summation formula 346 354
Euler's constant 245
Euler's trinomial 64
Euler, L. 29 32 42 62 64 71 75 93 101 117 160 195 209 223 231 260 287 301 331 345 347 350—351 357
Exhaustion, method of 85 311
Expected value 163 225—230
Exponential function and series 195—197
Exponential generating function 161 167
Factorial 265—267
Factorial powers 72
Fair coin 225 248
Faltings, G. 50
Farin, G.E. 285
Fatou, P. 172
Fejer, L. 275
Feller, W. 32 164 226
Fermat numbers 34 62 71 116
Fermat's great theorem 110 221 316—317
Fermat's last theorem 4 41 47 94
Fermat's little theorem 100—104 108 116—118
Fermat, P. de see also “Infinite descent” 55 75—76 114 330
Fibonacci (Leonardo of Pisa) 124
Fibonacci (Leonardo of Pisa) Liber abaci 124
Fibonacci numbers 35 71 123—135 138 154
Fibonacci search algorithm 138
Figurate numbers 74 342
Fixed point 172 180—181
Fixed Point Iteration 180
Foley, J.D. 285
Folium of Descartes 56
Formally undecidable propositions 51
Fractal 175 318 326—327
Freedman, D. 207
Frenicle de Bessy, B. 103
Fresnel integrals 273
Function (x) 297
Function (n) 115 358—367
Function arithmetical 219
Function average value of 219—220 239
Function binomial 65—68
Function Cantor 332—333
Function convex 199—200
Function d(n) 244
Function dilogarithm 350
Function Dirac delta 276—281
Function elementary 266 268
Function error 207—213
Function Euler 36 117
Function exponential generating 161 167
Function generating 159 163—165 167 169 259 261—263
Function logistic 181—184 7
Function peaking 274 278—280
Function r(n) 220—223 317
Function Riemann zeta 352—353
Functional equation 150—152 158 211
Fundamental Theorem of Arithmetic see also “Gaussian integers” 23 48 371
Fundamental theorem of calculus 355
Fundamental theorem of information theory 133
Gage, P. 61
Gallon, F. 185 214—216
Gallon, F. Natural Inheritance 185 214
Gambler's ruin 162—164
Gardner, M. 261
Gauss, C.F. 63 110 118 120 207 209 213 231 247 264 304 369 376
Gauss, C.F., Disquisitiones Arithmeticae 120 369
Gauss, C.F., Theoria Motus 207
Gaussian curve 213 327
Gaussian integers 112—113
Generating function 159 163—165 167 169 259 261—263
Geometric mean 20 186—195
Geometric series 310—324
Gilbert, W.S. 57
Gilbreath's conjecture 308
Girard, A. 111
Gleick, J. 322
Gnomon 81
Godel,K. 4 51
Goldbach's conjecture 5—6 58
Goldbach, C. 64 260
Golden ratio 140—153 159 171
Golden rectangle 144—148
Golden section see “Golden ratio”
Gosper, C. 238
Grabiner, J.V. 223
Graham, R.L. 12 295
Grandi, G. 223
Greatest common divisor see also “Euclidean algorithm” 26
Gregory's series 316 331
Gregory, J. 316 344
Guy, R.K. 8 42 116 295
Hadamard, J. 306
Halmos, P.R. x
Halting problem 51
Hardy, G.H. xi 5 224 369
Harmonic mean 187 201
Harmonic number 165 296
Harmonic series 287—288 295—296
Ðåêëàìà