Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Young R.M. — Excursions in Calculus: An Interplay of the Continuous and the Discrete
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Excursions in Calculus: An Interplay of the Continuous and the Discrete
Àâòîð: Young R.M.
Àííîòàöèÿ: he purpose of this book is to explore the rich and elegant interplay that exists between the two main currents of mathematics, the continuous and the discrete. Such fundamental notions in discrete mathematics as induction, recursion, combinatorics, number theory, discrete probability, and the algorithmic point of view as a unifying principle are continually explored as they interact with traditional calculus.
As the topics and applications will show, much of the material has never been presented in this level. The book is addressed primarily to well-trained calculus students and those who teach them, but it can also serve as a supplement in a traditional calculus course for anyone who wants to see more. The problems, taken for the most part from probability, analysis, and number theory, are an integral part of the text. There are over 400 problems presented in this book.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1992
Êîëè÷åñòâî ñòðàíèö: 408
Äîáàâëåíà â êàòàëîã: 13.04.2008
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Harmonic triangle 340—341
Hartt, F. 147
Hawking, S.W. 3
Heath, T.L. 310
Heaviside, O. 355
Heptagonal numbers 94
Hermite's identity 22
Heron of Alexandria 19
Heron's formula 191
Hersh, R. 219 225 304
Hexagonal numbers 94
Higher parabolas, quadrature of 83—85
Hilbert's tenth problem 51 69 124 137
Hilbert, D. x 34 51
Hilton, P. 78
Hobson, E.W 311
Huntley, H.E. 151
Huygens, C. 114 238 316 339 344
Hyperbola 196 245 289—290 310
icosahedron 156
Inclusion and exclusion, principle of 30—33 36 300
Incompleteness theorem 51
Independent 210 226 292
Induction, backward 189
Induction, failure of 22 249
Induction, mathematical 3—53
Induction, Principle of 15
Inequality arithmetic and geometric mean 186—195
Inequality Bernoulli's 22
Inequality Cauchy — Schwarz 202
Inequality Chebyshev's 204
Infinite descent 38—40
Infinite ladder 10 40 96
Infinite product 29 169 259 364
Infinite product for 29—30 250—254
Infinite product for the Riemann zeta function 353—354
Infinite product for the sine 347
Infinitesimal 85 195—197
Integer-valued polynomial 65
Integers, complex 112—113
Integral elliptic 231 263
Integral Fresnel 273
Integral logarithmic 305
Integral probability 267—272
Integration by parts 253 305
Intermediate value property 157
Introductio in anafysin infinitorum x 195—196
Irrational numbers 39—41 205
Isoperimetric problem 189
Isoperimetric theorem 191
Iterated functions 170—184
Ivory, J. 104
Jackson, D. 281
Jacobi C.G.J. 306 316
Jeu de rencontre see “Matching game”
Joyce, J. 197
Julia, G. 172
Kac, M. 248 292
Kazarinoff, N.D. 190 275—276
Keisler, H.J. 197
Kepler, J. 140
Kernel 278—279
Kiefer, J. 138
Klein, F. 195 311
Kline, M. 41 52 197 225 325
Knopp, K. 40 224
Knuth, D.E. 27 29
Koch curve 323—325 336
Koch, H. von 323
Kronecker, L. 4
Kummer, E.E. 50 94
L'Hopital, G.F.A. de 343
Ladies'Diary 95
Lagrange polynomial 285
Lagrange, J.L. 107 138 231—232
Lame, G. 35 125 128—129
Landau, E. 281
Lander, L.J. 42
Landry, F. 62
Laplac's problem 243
Laplace, P.S. 160 209 213—214 216 357
Laplace, P.S., Theorie analytique des probabilites 160
Lattice points 36 221 245
Law of errors 206—216
Le Corbusier 145
Least squares, method of 212 217 245
Lebesgue, H. 275 282
Lee, E.J. 28
Legendre, A.M. 209 212 231 304
Legendre, A.M., Nouvelle methode pour la determination des orbites des cometes 212
Lehmer, D.H. 105
Lehmer, D.N. 59 238
Leibniz's series 314—318 331 334 352
Leibniz, G.W. 8 107 118 223 256 313 316 333 338—345
Leibniz, G.W., Historia et Origo Calculi Differentialis 316 339
Lemniscate 231
Lemniscate constant 234
Leonardo of Pisa see “Fibonacci”
Lindemann, C.L.F. 314
Lippmann, G. 206
Lobachevsky, N.I. 306
Logarithmic integral 305
Logarithmic spiral 148—153
Logistic function 181 184
Lucas sequence 131 134
Lucas — Lehmer test 105
Lucas, E. 24 35 117 125 136 335
Lucas, E., Recreations Mathimatiques 25
Maclaurin, C. 186 198
Madachy, J.S. 28
Madeleine — Perdrillat, A. 146
Maistrov, L.E. 214
Mandelbrot set 173—179
Mandelbrot, B.B. 173 175 318 320 323 326—327
Mann, H.B. 69
Matching game 32 242
Matijasevich, Y. 52 125
Maugham, W.S. 9
Maurolico, F. 15
Maurolico, F., Arithmetica 15
May, K.O. 231
Mazur's game 157
Mead, D.G. 269
Mean and extreme ratio see “Golden ratio”
Mean arithmetic 20 186—195
Mean arithmetic-geometric 231—238
Mean geometric 20 186—195
Mean harmonic 187 201
Mean proportional see “Geometric mean”
Mean quadratic 202
Menger sponge 321—322
Menger, K. 322
Mengoli, P. 338
Mersenne numbers 104—106 115—116 125 135
Mersenne primes 104—106 125 245
Mersenne, M. 104 148
Method of bisection 157
Method of exhaustion 85 311
Method of least squares 212 217 245
Method of undetermined coefficients 161 355
Mills, W.H 69
Minkowski's theorem 119
Modular arithmetic 369—377
Modulus 369
Modulus of precision 213
Moments 287
Mondrian, P. 145 147
Monte Carlo method 230
Montmort, P.R. 32
Mordell, L.J. 55
Moritz, R.E. 318
Moroney, M.J. 186
Muntz — Szasz theorem 287
Needham, J. 8
Nested interval principle 141
Nested radicals 10 21 29 171 184
Neugebauer, O. 43
Newton's forward difference formula 73
Newton's method 192
Newton's series 330
Newton, I. 73 251 256 313 316
Nicomachus 9 76
Nilakantha 316
Nonstandard analysis 197
Norm 113
Normal curve 213 327
Normal law 209—216
Numbers amicable 28
Numbers Bell 167
Numbers Bernoulli 87—94 99 160—161 352 355
Numbers binomial 20—21 95 98—99 135 283—284 335—336 351
Numbers Carmichael 116
Numbers Catalan 259
Numbers complex 112 170
Numbers composite 7
Numbers congruent 369—377
Numbers factorial 265—267
Numbers Fermat 34 62 71 116
Numbers Fibonacci 35 71 123—135 138 154
Numbers figurate 74 342
Numbers Gaussian 112—113
Numbers harmonic 165 296
Numbers heptagonal 94
Numbers hexagonal 94
Numbers irrational 39—41 205
Numbers Lucas 131 134
Numbers Mersenne 104—106 115—116 125 135
Numbers octagonal 94
Numbers pentagonal see also “Pentagonal number theorem” 75 94
Numbers perfect 100—101
Numbers polygonal 74
Numbers prime see “Prime numbers”
Numbers pseudoprime 116
Numbers pyramidal 76
Numbers rational 39
Numbers relatively prime 34 63 136
Numbers square 74 94
Numbers Stirling 73 166
Numbers tangent 170
Numbers tetrahedral 76 342
Numbers triangular 18 74 94 118—119 308 342
Octagonal numbers 94
octahedron 156
Oldenbeig, H. 316
Orbit 171
Order 103
Palindrome conjecture 9
Papadimitriou, I. 348
Parabola, quadrature of 310—314
Parkin, T.R. 42
Partial fractions 339 352
Partial products 29 289
Partial sums 224 289 296
Partition of a number 169
Partition of a set 166
Pascal's triangle see also “Binominal coefficients” 15 20 69 77 99 216
Pascal's triangle modulo 2 334—336
Pascal, B. 15 343—344
Pascal, B., Traite du triangle arithmitique see also “Binominal coefficients” 15 78
Peaking kernel 278—281
Peano, G. 325
Pedersen, J. 78
Pentagonal number theorem 357—367
Pentagonal numbers 75
Pentagram 154
Perfect numbers 100—101
Phyllotaxis 1247
Picard kernel 279
Pisani, R. 207
Plutarch 95
Poincare, H. 94 123 207 214 325 356
Polygon-triangulation problem 260
Polygonal numbers 74
Polynomial see also “Binomial functions; Weierstrass approximation theorem”
Polynomial Bernoulli 87—93 99
Polynomial Bernstein 283—284
Polynomial Bezier 284—286
Polynomial Euler 64
Polynomial Lagrange 285
Pomerance, C. 116
Power series 159—169 255—264 314—316 338
Prime number theorem 247 296—306
Prime numbers see also “Fermat's great theorem; Fermat's little theorem; Prime number theorem; Wilson's theorem”
Prime numbers counting function for 297
Prime numbers definition of 5
Prime numbers density of 296—300
Prime numbers factorization into see “Fundamental theorem of arithmetic”
Prime numbers Fermat 62
Prime numbers formulas for 64 69
Prime numbers in arithmetical progressions see “Dirichlet's theorem”
Prime numbers largest of the known 61
Prime numbers Mersenne 104—106 125
Prime numbers proofs of infinitude of 60 63 137 287
Prime numbers regular 94
Prime numbers table of 59
Prime numbers twin 62
Principle of the arithmetic mean 207
probability see “Bertrand's paradox; Buffon's needle problem; Coin tossing; Gambler's ruin; Laplace's problem; Law of errors; Matching game; Probleme de parties; Random walk
Probleme de parties 168
Pryce, J.D. 275
Pseudoprimes 116
Public key cryptography 119
Purves, R. 207
Pyramidal numbers 76
Pythagoras 4 28
Pythagorean Theorem 39
Pythagorean triangle see also “Pythagorean triple” 11 43 53
Pythagorean triangle primitive 43 241
Pythagorean triple 43—47
Quadratic convergence 194
Quadratic mean 202
Quadrature see “Circle; Higher parabolas; Parabola”
Quartic convergence 237
Quetelet, L.A.J. 214
Quincunx, Galton's 214—216
Rademacher, H. 60
Rajagopal, C.T. 316
Ramanujan, S. 10 237
Random 243—244 353
Random walk 261—263
Rational numbers 39
Rational points 44—46 49 55—56
Recursion algorithms for 236—238 243—244
Recursion arithmetic-geometric mean iteration 232—234
Recursion Babylonian algorithm for square roots 192—194
Recursion Fermat numbers 63
Recursion Fibonacci numbers 124
Recursion fractals 170—179 318—325
Recursion gambler's ruin 162—164
Recursion Lucas — Lehmer test 105
Recursion pentagonal number theorem 357—367
Recursion polygon-triangulation problem 260
Recursion polynomial approximation 282
Recursion quadrature of the parabola 310—313
Recursion Stirling numbers 166—167
Recursion subfactorials 37
Recursion tower of Hanoi 24—26
Regular prime 94
Reichardt, H. 247
Relatively prime numbers 34 63 136
Ðåêëàìà