Авторизация
Поиск по указателям
Isham C. — Modern Differential Geometry for Physicists
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Modern Differential Geometry for Physicists
Автор: Isham C.
Аннотация: These lecture notes are the content of an introductory course on modern, co-ordinate-free differential geometry which is taken by first-year theoretical physics PhD students, or by students attending the one-year MSc course, "Fundamental Fields and Forces" at Imperial College. The book is concerned entirely with mathematics proper, although the emphasis and detailed topics have been chosen bearing in mind the way in which differential geometry is applied to modern theoretical physics. This includes not only the traditional area of general relativity but also the theory of Yang-Mills fields, nonlinear sigma models and other types of nonlinear field systems that feature in modern quantum field theory. This edition of the text contains an additional chapter that introduces some of the basic ideas of general topology needed in differential geometry. A number of small corrections and additions have also been made. The volume is divided into four parts. The first provides an introduction to general topology, the second covers introductory co-ordinate-free differential geometry, the third examines geometrical aspects of the theory of Lie groups and Lie group actions on manifolds, and the fourth provides an introduction to the theory of fibre bundles. In the introduction to differential geometry the author lays considerable stress on the basic ideas of "tangent space structure", which he develops from several different points of view - some geometrical, others more algebraic.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1999
Количество страниц: 306
Добавлена в каталог: 23.11.2014
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
233
f 81
162
226
11
160
142
218
5
9
62
125
272
48
204
) 154
180
127
143
78
105
250
94
94
9
159
171
150
98
116
130
180
233
162
150
65
68
229
74
123
123
133
5
74
121
254
191
63
24
97
(f) 99
98
142
4
26
24
101
248
171
223
16
24
224
98
204
192
34
26
F 219
4
188
229
79
222
188
5
5
110
-form 135
-form closed 142
-form exact 142
-form left-invariant 171
-form right-invariant 171
-form, exterior derivative of 137
-form, exterior product of 135
135
219
126
53
5
5
5
15
34
234
95
(f) 75
(x) 218
[F] 233
4
8
135
80
127
263
V 133
121
269
87
34
(E, ) 202
a b 146
A B 5
A B 6
a b 19
a b 18
Accumulation point 47
Adjoint map 162
Anti-homomorphism 152
Associated bundle 233
Associated bundle, automorphism group of 239
Associated bundle, local isomorphism between pair of 237
Associated bundle, map between pair of 237
Associated bundle, trivial 237
Bd(A) 12
Bianchi identity 274
Billiard-ball hairy 101
Boolean algebra 20 42
Boundary of a set 12
Boundary point 12 31
Bundle 202
Bundle 204
Bundle base space 202
Bundle cross-section of see "Cross-section"
Bundle etale 212
Bundle fibre 204
Bundle fibre over x 202
Bundle G 220
Bundle isomorphism between a pair of 215
Bundle local isomorphism between a pair of 215
Bundle locally trivial 216
Bundle M-map 215
Bundle map 214
Bundle map, composition of pair of 215
Bundle normal 210
Bundle normal, of an embedding 249
Bundle of tensors 236
Bundle product 204
Bundle projection map of 202
Bundle pull-back 217
Bundle restriction to subset of base space 213
Bundle sub 213
Bundle total space 202
Bundle trivial 216
Bundle universal 219 228 232
Canonical 110
Cartan structural equation 272
Cartan — Maurer equation 173
Cartan — Maurer form 173 257
Cartesian product 6 36 64
Characteristic class 219 231
Closed set 13 31 35
Closure 53
Collection of subsets coarser than 26
Commutation relations affine 111
Compact space 47
Connection affine sum of pair of 256
Connection local representative of 256
Connection principal bundle in 254
Coordinate chart 61
Coordinate chart, atlas of 62
Coordinate chart, domain of 61
Coordinate functions 63
coordinates 63
Cotangent bundle 123
Cotangent space 123
Cotangent vector 123
Covariant derivative 269 270
Covering space 210
Cross-section 200 207 241
Cross-section, associated bundle of 246
Cross-section, local representative of 247
Cross-section, principal bundle of 230
Cross-section, product bundle of 207
Cross-section, pull-back of 218
Cross-section, tangent bundle of 98
Curvature two-form 272
Curve, definition of 73
Curve, horizontal lift of 263
Curve, tangent pair of 73
d(x,y) 6
deRham complex 141 171
DeRham's theorem 217
Derivation at a point 80
Derivation of the ring 99
Derivation, components of 84
df 131
Diff( ) 70
Diffeomorphism, definition of 70
Diffeomorphism, group of 70 224 229
Diffeomorphism, one-parameter group of 111
Differentiable manifold 62
Differentiable manifold, complex 63
Differentiable manifold, infinite-dimensional 63
Differential structure 62
Directed set 46
Directional derivative 75
Dual vector space 121
Dual vector space, dual basis of 121
Dual vector space, dual map between pair of 121
E( ) 204
Eilenberg — MacLane space 228
Equivalence exact sequence 255
exp A 165
Exponential map 165
Ext(A) 12
Exterior derivative covariant 272
Exterior derivative, function of 131
Exterior of a set 12
Exterior point 12 31
f:A B 6
Filter base 29 47 50
Filter base, convergence with respect to 30
Filter, definition of 29
Filter, subbase 31
Filter, ultra 45
Finer than 26
First countable space see "Topology first
Function 69
Function continuous 49
Function diagonal 95
Function differentiable 70
Function distance 5
Function equivariant 178
Function inverse set 48
Function smooth 70
Function, homotopic pair of 145 218
Function, local representative of 69
G-product 232
Gauge group 16 224 229 231 258
Gauge orbit 16
Gauge transformation 224 226 239 258
GL(n, ) 153
GL(n, ) 152
Gribov effect 231
Group action 52
Group action, orbit of 52
Group Lorentz 157
Group, action on a set 175
Group, action on a set, free 179
Group, action on a set, kernel of 179
Group, action on a set, orbit of 180
Group, action on a set, orbit space of 182
Group, action on a set, stability group of 180
Group, action on a set, transitive 179
Group, adjoint representation of 168
Group, cohomology 201 217 219 229 232 242
Group, general linear, complex 284
Group, general linear, real 152
Group, holonomy 267
Group, homotopy 228 229 242 246
Group, left translation of 150
Group, orthogonal 155
Group, orthogonal special 157
Group, partial 113
Group, right translation of 150
Group, special linear 154
Group, special unitary 157
Group, spin 225
Group, topological 151
Group, unitary 157
Hausdorff space see "Topology Hausdorff"
Heyting algebra 42
Homeomorphism 51
Homotopic functions see "Function homotopic
Hopf bundle 222
hor( ) 255
Horizontal subspace 268
Instanton 201 222 226 243
Int(A) 12
Integral curve see "Vector field integral
Interior of a set 12
Interior point 12 31
Intuitionistic logic 42
Isotropy group see "Group action stability
Jacobi identity 103
Jacobian matrix 88
K( ,n) 228
Kaluza — Klein theory 201
Klein bottle 205
L(G) 158
Lattice a topology as an example 40
Lattice anti-atomic 45
Lattice atomic 44
Lattice complete 19 41
Lattice distributive 19 41
Lattice example of closed linear subspaces of a Hilbert space 22
Lattice structure on space of topologies 43
Lattice, definition of 19
Lattice, null element in 19
Реклама