Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Isham C. — Modern Differential Geometry for Physicists
Isham C. — Modern Differential Geometry for Physicists



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Modern Differential Geometry for Physicists

Автор: Isham C.

Аннотация:

These lecture notes are the content of an introductory course on modern, co-ordinate-free differential geometry which is taken by first-year theoretical physics PhD students, or by students attending the one-year MSc course, "Fundamental Fields and Forces" at Imperial College. The book is concerned entirely with mathematics proper, although the emphasis and detailed topics have been chosen bearing in mind the way in which differential geometry is applied to modern theoretical physics. This includes not only the traditional area of general relativity but also the theory of Yang-Mills fields, nonlinear sigma models and other types of nonlinear field systems that feature in modern quantum field theory. This edition of the text contains an additional chapter that introduces some of the basic ideas of general topology needed in differential geometry. A number of small corrections and additions have also been made. The volume is divided into four parts. The first provides an introduction to general topology, the second covers introductory co-ordinate-free differential geometry, the third examines geometrical aspects of the theory of Lie groups and Lie group actions on manifolds, and the fourth provides an introduction to the theory of fibre bundles. In the introduction to differential geometry the author lays considerable stress on the basic ideas of "tangent space structure", which he develops from several different points of view - some geometrical, others more algebraic.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1999

Количество страниц: 306

Добавлена в каталог: 23.11.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Lattice, unit element in      19
Lattice, upper set in      27
Lie algebra      103
Lie algebra dual      171
Lie algebra of GL($\mathfrak{n},\mathds{R}$)      169
Lie algebra, structure constants of      161
Lie derivative, function of      98
Lie derivative, one-form of      130
Lie derivative, vector field of      116
Lie group of      159
Lie group, action on a manifold      177
Lie group, definition of      150
Lie group, homomorphism between pair of      152
Lie group, one-parameter subgroup of      166
Lie group, subgroup of      150
Limit point      12 14 31 35
Linear frame      223
Little group      see "Group action stability
Locale      56
Locally compact space      153
Lower set      37
M(n,$\mathds{R}$)      104
MAP      see "Function"
Map continuous      50
Metric      6
Metric bounded      11
Metric Lorentzian      18 224 245
Metric Riemannian      8 224 229 241 243 244
Metric(X)      16
Metric, stronger than      7 16 26
Metric, weaker than      7
Metrics equivalent      7 16
Metrics isometric      7
Metrics, join of      10
Metrics, lattice structure on      11
Metrics, meet of      11
Metrics, partial ordering of      21
Moebius band      205
Moebius transformations      152
Neighbourhood filter      29 34
Neighbourhood space      29
Neighbourhood structure      29 34
Neighbourhoods of a point      17 23 27 32
Neighbourhoods, equivalent families of      26 27
Net      46
Net, convergence of      46
Non-linear $\sigma$-model      240
Norm      8
O(n,$\mathds{R}$)      155
O(p,q;$\mathcal{R}$)      157
One-form V-valued      126
One-form, components of      126
One-form, definition of      123
One-form, pull-back of      127
Open set      13 31 35
Open set, pseudo-complement of      41
Orbit space      see "Group action orbit
Overlap function      61
P(X)      16
Palais' Theorem      198
Parallel translation      267 268
Partially ordered set      see "Poset"
Perm(X)      52
Poincare lemma      142
Poset, covering element in      15
Poset, definition of      15
Poset, greatest lower bound in      18
Poset, join operation in      19
Poset, least upper bound in      19
Poset, meet operation in      18
Poset, orthocomplemented      19
Poset, topologies on      36
Pre-order      15
Principal bundle      221
Principal bundle, automorphism group of      226
Principal bundle, G-extension of      241
Principal bundle, H-restriction of      241
Principal bundle, locally trivial      226
Principal bundle, map      225
Principal bundle, structure functions of      239
Principal bundle, structure group of      221
Principal bundle, translation function of      234
Principal bundle, trivial      226
Pseudo-metric      6 53
Relation, definition of      15
Relation, equivalence      16 50
Riemann sphere      188
Scalar density      236
Sequence convergent      3 5 6 14 24 26 29
Sequence of functions, point wise convergence of      24 31
Sequence, tails of      5 24 26 47
Sequence, tails of, as a filter base      30
Sheaf      212
SL(n,$\mathds{C}$)      154
SL(n,$\mathds{R}$)      154
SO(n,$\mathds{R}$)      157
SO(p,q;$\mathds{R}$)      157
Space metric      3 6 31 54
Space topological      see "Topology"
Spin($\mathfrak{m},\mathds{R}$)      225
Spontaneous symmetry breakdown      241
Stability group      see "Group action stability
Stereographic projection      68
SU(N)      157
Submanifold      64
Tangent bundle      74
Tangent bundle, differential structure on      89
Tangent space      74
Tangent space of a product manifold      92
Tangent vector      74
Tangent vector, push-forward of      78
Tensor      133
Tensor density      236
Tensor field      134 135
Tensor, contravariant      133
Tensor, covariant      133
Topological space      see "Topology"
Topology $T_0$      53
Topology $T_1$      53
Topology $T_2$      see "Topology Hausdorff"
Topology coarser      see "Topology weaker"
Topology cofinite      36 54
Topology connected      61
Topology discrete      43 54
Topology finer      see "Topology stronger"
Topology first countable      33
Topology Hausdorff      53
Topology identification      50 53
Topology indiscrete      43
Topology induced      50
Topology lattice structure on open sets      40
Topology of a metric space      13
Topology paracompact      231 242
Topology product      36
Topology separation axioms      52
Topology stronger      42
Topology subspace      50
Topology weaker      42
Topology, base of      35
Topology, component of      61
Topology, definition of      13 32 35
Topology, lattice structure on      52
Topology, subbase of      35
Topos theory      42
Torus      67
U(n)      157
Upper set      27 36
V$\bigoplus$W      93
V$\bigotimes$W      132
Vector bundle      123 248
Vector bundle, $\mathcal{TM}$ as an example of      77
Vector bundle, map between pair of      248
Vector field, $C^{\infty}(\mathcal{M})$-module structure on set of      99
Vector field, as derivation of ring C(M)      99
Vector field, commutator of pair of      102
Vector field, complete      109
Vector field, components of      100
Vector field, definition of      97
Vector field, h-related pair of      105
Vector field, horizontal lift of      262
Vector field, induced      114
Vector field, induced by one-parameter subgroup      191
Vector field, integral curve of      108
Vector field, left-invariant      158
Vector field, local flow of      115
Vector field, restriction to open subset      98
Vector field, right-invariant      158
Vector field, vector space structure on set of      99
Vector horizontal      256
Vector space, topological      63 122
Vector vertical      254
ver($\tau$)      255
Vertical subspace      268
VFld($\mathcal{M}$)      99
Wilson loop      266
X — A      11
x$\in$X      3
X$\times_G$Y      233
X$\uparrow$      262
X/R      16
xf      97
Yang — Mills theory      16 201 207 222 224 229 231 239 256 265 271
[$\sigma$]      74
[a,b]      9
[AB]      160
[X,Y]      102
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте