Авторизация 
		         
		        
					
 
		          
		        
			         
		          
		        
			        Поиск по указателям 
		         
		        
			        
					 
				        
					
			         
		          
		        
			         
		          
			
			         
		         
       		 
			         
		          
                
                    
                        
                     
                  
		
			         
		          
		        
			         
		          
		
            
	     
	    
	     
	    
	    
            
		 
                
                    Isham C. — Modern Differential Geometry for Physicists 
                  
                
                    
                        
                            
                                
                                    Обсудите книгу на научном форуме      
 Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter 
 
                                 
                                
                                    Название:   Modern Differential Geometry for Physicists 
Автор:   Isham C.   
Аннотация:  These lecture notes are the content of an introductory course on modern, co-ordinate-free differential geometry which is taken by first-year theoretical physics PhD students, or by students attending the one-year MSc course, "Fundamental Fields and Forces" at Imperial College. The book is concerned entirely with mathematics proper, although the emphasis and detailed topics have been chosen bearing in mind the way in which differential geometry is applied to modern theoretical physics. This includes not only the traditional area of general relativity but also the theory of Yang-Mills fields, nonlinear sigma models and other types of nonlinear field systems that feature in modern quantum field theory. This edition of the text contains an additional chapter that introduces some of the basic ideas of general topology needed in differential geometry. A number of small corrections and additions have also been made. The volume is divided into four parts. The first provides an introduction to general topology, the second covers introductory co-ordinate-free differential geometry, the third examines geometrical aspects of the theory of Lie groups and Lie group actions on manifolds, and the fourth provides an introduction to the theory of fibre bundles. In the introduction to differential geometry the author lays considerable stress on the basic ideas of "tangent space structure", which he develops from several different points of view - some geometrical, others more algebraic.
 
Язык:   
Рубрика:  Математика / 
Статус предметного указателя:  Готов указатель с номерами страниц  
ed2k:   ed2k stats  
Год издания:  1999 
Количество страниц:  306 
Добавлена в каталог:  23.11.2014 
Операции:  Положить на полку  |
	 
	Скопировать ссылку для форума  | Скопировать ID 
                                 
                             
                        
                     
                 
                                                                
			         
	          
                
                    Предметный указатель 
                  
                
                    
                               233    
 f       81    
       162    
       226    
       11    
       160    
       142    
       218    
       5    
       9    
       62    
       125    
       272    
       48    
       204    
 )       154    
       180    
       127    
       143    
       78    
       105    
       250    
       94    
       94    
       9    
       159    
       171    
       150    
       98    
       116    
       130    
       180    
       233    
       162    
       150    
       65    
       68    
       229    
       74    
       123    
       123    
       133    
       5    
       74    
       121    
       254    
       191    
       63    
       24    
       97    
 (f)       99    
       98    
       142    
       4    
       26    
       24    
       101    
       248    
       171    
       223    
       16    
       24    
       224    
       98    
       204    
       192    
       34    
       26    
 F       219    
       4    
       188    
       229    
       79    
       222    
       188    
       5    
       5    
       110    
 -form       135    
 -form closed       142    
 -form exact       142    
 -form left-invariant       171    
 -form right-invariant       171    
 -form, exterior derivative of       137    
 -form, exterior product of       135    
       135    
       219    
       126    
       53    
       5    
       5    
       5    
       15    
       34    
       234    
       95    
 (f)       75    
 (x)       218    
 [F]       233    
       4    
       8    
       135    
       80    
       127    
       263    
 V       133    
       121    
       269    
       87    
       34    
(E, )       202    
a b       146    
A B       5    
A B       6    
a b       19    
a b       18    
Accumulation point        47    
Adjoint map        162    
Anti-homomorphism        152    
Associated bundle        233    
Associated bundle, automorphism group of        239    
Associated bundle, local isomorphism between pair of        237    
Associated bundle, map between pair of        237    
Associated bundle, trivial        237    
Bd(A)       12    
Bianchi identity        274    
Billiard-ball hairy        101    
Boolean algebra        20   42    
Boundary of a set        12    
Boundary point        12   31    
Bundle        202    
Bundle        204    
Bundle base space        202    
Bundle cross-section of        see "Cross-section"    
Bundle etale        212    
Bundle fibre        204    
Bundle fibre over x        202    
Bundle G        220    
Bundle isomorphism between a pair of        215    
Bundle local isomorphism between a pair of        215    
Bundle locally trivial        216    
Bundle M-map        215    
Bundle map        214    
Bundle map, composition of pair of       215    
Bundle normal        210    
Bundle normal, of an embedding        249    
Bundle of tensors        236    
Bundle product        204    
Bundle projection map of        202    
Bundle pull-back        217    
Bundle restriction to subset of base space        213    
Bundle sub        213    
Bundle total space        202    
Bundle trivial        216    
Bundle universal        219   228   232    
Canonical        110    
Cartan structural equation        272    
Cartan — Maurer equation        173    
Cartan — Maurer form        173   257    
Cartesian product        6   36   64    
Characteristic class        219   231    
Closed set        13   31   35    
Closure        53    
Collection of subsets coarser than        26    
Commutation relations affine        111    
Compact space        47    
Connection affine sum of pair of        256    
Connection local representative of        256    
Connection principal bundle in        254    
Coordinate chart        61    
Coordinate chart, atlas of        62    
Coordinate chart, domain of        61    
Coordinate functions        63    
coordinates        63    
Cotangent bundle        123    
Cotangent space        123    
Cotangent vector        123    
Covariant derivative        269   270    
Covering space        210    
Cross-section        200   207   241    
Cross-section, associated bundle of        246    
Cross-section, local representative of        247    
Cross-section, principal bundle of        230    
Cross-section, product bundle of        207    
Cross-section, pull-back of        218    
Cross-section, tangent bundle of        98    
Curvature two-form        272    
Curve, definition of        73    
Curve, horizontal lift of        263    
Curve, tangent pair of        73    
d(x,y)       6    
deRham complex        141   171    
DeRham's theorem        217    
Derivation at a point        80    
Derivation of the ring        99    
Derivation, components of        84    
df       131    
Diff( )       70    
Diffeomorphism, definition of        70    
Diffeomorphism, group of        70   224   229    
Diffeomorphism, one-parameter group of        111    
Differentiable manifold        62    
Differentiable manifold, complex        63    
Differentiable manifold, infinite-dimensional        63    
Differential structure        62    
Directed set        46    
Directional derivative        75    
Dual vector space        121    
Dual vector space, dual basis of       121    
Dual vector space, dual map between pair of       121    
E( )       204    
Eilenberg — MacLane space        228    
Equivalence exact sequence       255    
exp A        165    
Exponential map        165    
Ext(A)        12    
Exterior derivative covariant        272    
Exterior derivative, function of        131    
Exterior of a set        12    
Exterior point        12   31    
f:A B       6    
Filter base        29   47   50    
Filter base, convergence with respect to        30    
Filter, definition of        29    
Filter, subbase        31    
Filter, ultra        45    
Finer than        26    
First countable space        see "Topology   first    
Function        69    
Function continuous        49    
Function diagonal        95    
Function differentiable        70    
Function distance        5    
Function equivariant        178    
Function inverse set        48    
Function smooth        70    
Function, homotopic pair of        145   218    
Function, local representative of        69    
G-product        232    
Gauge group        16   224   229   231   258    
Gauge orbit        16    
Gauge transformation        224   226   239   258    
GL(n, )       153    
GL(n, )       152    
Gribov effect        231    
Group action        52    
Group action, orbit of        52    
Group Lorentz        157    
Group, action on a set        175    
Group, action on a set, free        179    
Group, action on a set, kernel of        179    
Group, action on a set, orbit of        180    
Group, action on a set, orbit space of        182    
Group, action on a set, stability group of        180    
Group, action on a set, transitive        179    
Group, adjoint representation of        168    
Group, cohomology        201   217   219   229   232   242    
Group, general linear, complex        284    
Group, general linear, real        152    
Group, holonomy        267    
Group, homotopy        228   229   242   246    
Group, left translation of        150    
Group, orthogonal        155    
Group, orthogonal special       157    
Group, partial        113    
Group, right translation of        150    
Group, special linear        154    
Group, special unitary        157    
Group, spin        225    
Group, topological        151    
Group, unitary        157    
Hausdorff space        see "Topology   Hausdorff"    
Heyting algebra        42    
Homeomorphism        51    
Homotopic functions        see "Function   homotopic    
Hopf bundle        222    
hor( )       255    
Horizontal subspace        268    
Instanton        201   222   226   243    
Int(A)        12    
Integral curve        see "Vector field   integral    
Interior of a set        12    
Interior point        12   31    
Intuitionistic logic        42    
Isotropy group        see "Group   action   stability    
Jacobi identity        103    
Jacobian matrix        88    
K( ,n)       228    
Kaluza — Klein theory        201    
Klein bottle        205    
L(G)       158    
Lattice a topology as an example        40    
Lattice anti-atomic        45    
Lattice atomic        44    
Lattice complete        19   41    
Lattice distributive        19   41    
Lattice example of closed linear subspaces of a Hilbert space        22    
Lattice structure on space of topologies        43    
Lattice, definition of        19    
Lattice, null element in        19    
                            
                     
                  
			 
		          
			Реклама