Авторизация
Поиск по указателям
Howie J.M. — Fields and Galois Theory
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Fields and Galois Theory
Автор: Howie J.M.
Аннотация: Fields are sets in which all four of the rational operations, memorably described by the mathematician Lewis Carroll as "perdition, distraction, uglification and derision", can be carried out. They are assuredly the most natural of algebraic objects, since most of mathematics takes place in one field or another, usually the rational field Q, or the real field M, or the complex field С This book sets out to exhibit the ways in which a systematic study of fields, while interesting in its own right, also throws light on several aspects of classical mathematics, notably on ancient geometrical problems such as "squaring the circle", and on the solution of polynomial equations.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2005
Количество страниц: 225
Добавлена в каталог: 09.02.2014
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
-automorphism 94
-group 159
Abel, Niels Henrik (1802-1829) 3
Abelian basis theorem 151
Abelian group 3 149
Abel’s theorem 145
Addition (of polynomials) 34
Algebraic element 59
Algebraic extension 59
Algebraic independence 175
Algebraic number 59
Alternating group 162
Associates 3
Associative law 1
Automorphism 9
Automorphism, Frobenius 90
Automorphism, identity 94
Basis Theorem 151
Canonical extension (of an isomorphism) 37
Cantor, Georg Ferdinand Ludwig Philipp (1845-1918) 61
Cardano, Girolamo (1501-1576) 127
Centraliser 157
Centre (of a group) 157
Characteristic 17
Characteristic polynomial 64
Class equation 156
Commutative law 1 3
Commutative ring 2
Conjugate elements 156
Constructible point 75 183
Constructible polygon 189
Coprime 26 28
Coset 21
Coset, left 21
Coset, right 22
Cubic equation 128
CYCLE 160
Cyclic extension 140
Cyclic group 21
Cyclotomic polynomial 133 135
Dedekind, Julius Wilhelm Richard (1831-1916) 92
Degree of a polynomial 34
Degree of an extension 52
Degree, transcendence 176
Descartes, Ren (1596-1650) 127
Dimension (of a vector space) 52
Direct product 153
Direct sum 149
Disjoint cycles 160
Division 4
Division algorithm 25
Divisor 4
Divisor, proper 4
Domain 2
Domain, Euclidean 25 33 38
Domain, factorial 30
Domain, integral 2
Domain, principal ideal 26
Domain, unique factorisation 30
Duplicating the cube 74 77
Eisenstein, Ferdinand Gotthold Max (1823-1952) 46
Eisenstein’s Criterion 46
Embedding 9
Equation, cubic 128
Equation, quadratic 127
Equation, quartic 130
Equation, quintic 173
Equivalence relation 5
Euclid of Alexandria (c. 325-265 B.C.) 25 187
Euclidean algorithm 27 39
Euclidean Domain 25 33 38
Extension 18 51
Extension by radicals 132
Extension, algebraic 59
Extension, cyclic 140
Extension, finite 52
Extension, finitely generated 175
Extension, Galois 115
Extension, infinite 52
Extension, normal 103
Extension, separable 110
Extension, simple 55
Extension, transcendental 59 175
Factor 4
Factor group 22
Factor, proper 4
Factorial domain 30 39
Fermat prime 191
Fermat, Pierre de (1601-1665) 191
Ferrari, Lodovico (1522-1565) 127
Ferro, Scipione del (1465-1526) 127
Field 2
Field, finite 85
Field, Galois 87
Field, of algebraic numbers 60
Field, of fractions 15
Field, perfect 110
Field, splitting 79 86
Finite extension 52
Finite field 85
Formal derivative 85
Frobenius automorphism 90
Frobenius, Ferdinand Georg (1849-1917) 90
Fundamental theorem of algebra 42
Galois correspondence 99
Galois extension 115
Galois field 87
Galois group 94
Galois, Evariste (1811-1832) 1
Gauss, Johann Carl Friedrich (1777-1855) 29 44 187
Gaussian integers 29 33
Gauss’s Lemma 44
General polynomial 178
Greatest common divisor 26 39
Group 3
Group, abelian 3 149
Group, alternating 162
Group, cyclic 21
Group, finite 21
Group, Galois 94
Group, of automorphisms 94
Group, of prime power order 157
Group, of units 3
Group, realisable 180
Group, simple 164
Group, soluble 154 163 167
Group, symmetric 160
Hermite, Charles (1822-1901) 61 180
Highest common factor 26
Hilbert, David (1862-1943) 140
Homomorphic image 22
Homomorphism 8
Homomorphism, natural 10 22
Homomorphism, substitution 40
Ideal 6
Ideal, principal 7
Identity 2
Identity automorphism 94
Indeterminate 35
INDEX 157
Infinite extension 52
Integral domain 2
Irreducible 29 39
Isomorphic 9
Isomorphism 9 22
Kernel 9 22 100
Klein, Felix Christian (1854-1912) 180
Lagrange, Joseph-Louis (1736-1813) 21 122
Lagrange’s Theorem 21
Leading coefficient 34
Lindemann, Carl Louis Ferdinand von (1852-1939) 61 78
Linearly independent 92
Liouville, Joseph (1809-1882) 61
Minimum polynomial 57
Monic polynomial 34
Monomorphism 9 92
Multiplication (of polynomials) 34
Natural homomorphism 10 22
Norm 140
Normal closure 106
Normal extension 103
Normal subgroup 22
Nullity 100
Partition 21
Perfect field 110
Permutation 162
Permutation, even 162
Permutation, odd 162
Perpendicular bisector 71
Poincar , Jules Henri (1854-1912) 180
Polynomial 33
Polynomial ring 35
Polynomial, characteristic 64
Polynomial, constant 34
Polynomial, cubic 34 128
Polynomial, cyclotomic 133 135
Polynomial, elementary symmetric 177
Polynomial, general 178
Polynomial, linear 34
Polynomial, minimum 57
Polynomial, monic 34
Polynomial, quadratic 34 127
Polynomial, quartic 34 130
Polynomial, quintic 34 173
Polynomial, separable 110
Polynomial, sextic 34
Polynomial, symmetric 177
Prime subfield 18 86
Principal ideal 7
Principal ideal domain 26 39
Quartic equation 130
Quintic equation 173
Quotient 25
Quotient group 22
Radical extension 132
Rank 100
Rational forms 36
Realisable group 180
Reflexive property 5
Regular polygon 187
Relatively prime 26
Remainder 25
Remainder theorem 40
Residue class 10
Residue class ring 10
Ring 1
Ring, commutative 2
Ring, with unity 2
Root (of a polynomial) 40
Ruler and compasses 71 75
Separable extension 110
Separable polynomial 110
Shafarevich, Igor Rostislavovich (1923-) 180
Simple extension 55
Simple group 164
Soluble by radicals 132 169 170 172
Soluble group 154 163 167 169 170 172
Solution by radicals 131
Splitting field 79 86
Splitting field, uniqueness 81
Squaring the circle 74 78
Subfield 6
Subfield, prime 18
Subgroup 21
Subgroup, normal 22
Subgroup, Sylow 156
Subring 6
Substitution homomorphism 40
Sylow subgroup 156
Symmetric group 160
Symmetric polynomial 177
Symmetric property 5
Tartaglia, Nicolo (1499-1557) 127
Trace 140
Transcendence degree 176
Transcendental element 175
Transcendental extension 59
Transcendental number 59
Transitive property 5
Transposition 161
Trisecting the angle 74 77
Unique factorisation domain 30 39
UNIT 3
Unity element 2
Vector space 51
Zero (of a polynomial) 40
Реклама