Авторизация
Поиск по указателям
Dwork B., Gerotto G., Sullivan F.J. — An Introduction to G-Functions
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: An Introduction to G-Functions
Авторы: Dwork B., Gerotto G., Sullivan F.J.
Аннотация: Written for advanced undergraduate and first-year graduate students, this book aims to introduce students to a serious level of p-adic analysis with important implications for number theory. The main object is the study of G-series, that is, power series y=aij=0 Ajxj with coefficients in an algebraic number field K. These series satisfy a linear differential equation Ly=0 with LIK(x) [d/dx] and have non- zero radii of convergence for each imbedding of K into the complex numbers. They have the further property that the common denominators of the first s coefficients go to infinity geometrically with the index s.After presenting a review of valuation theory and elementary p-adic analysis together with an application to the congruence zeta function, this book offers a detailed study of the p-adic properties of formal power series solutions of linear differential equations. In particular, the p-adic radii of convergence and the p-adic growth of coefficients are studied. Recent work of Christol, Bombieri, Andrй, and Dwork is treated and augmented. The book concludes with Chudnovsky's theorem: the analytic continuation of a G- series is again a G-series. This book will be indispensable for those wishing to study the work of Bombieri and Andrй on global relations and for the study of the arithmetic properties of solutions of ordinary differential equations.
Язык:
Рубрика: Математика /Анализ /Специальные функции /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1994
Количество страниц: 323
Добавлена в каталог: 09.04.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Accessory parameter 158
Additive character 56
Additive character, trivial 56
Additive radius of convergence 42
Amice ring 129
Analytic element 128 129
Analytic element, analytic in an annulus 131
Analytic function 117
Analytic function, bounded 117
Annulus of convergence 47
Apparent singularity 171
Artin — Hasse exponential 55
Associated scalar operator 87
Binomial series 49 97 140
Bombieri condition 226
Bombieri condition, local 234
Bombieri estimate 261
Boundary seminorm 117
Bounded polygon 303
Cauchy estimates 114
Cauchy sequence 6
Characteristic of a field 4
Chudnovsky’s Theorem 267
Complete field 6
Completion 7
Cyclic differential module 87
Cyclic vector, Theorem of 89
Denominator 224
Dense 7
Derivation 77
Derivation, non-trivial 77
Dieudonne’s Theorem 54
Differential extension 79
Differential field 77
Differential module 86
Differential module, cyclic 87
Differential module, nilpotent 88
Differential operator 78
Differential operator, globally nilpotent 98
Differential operator, nilpotent 81
Differential operator, trivial 79
Differential system 86
Differential system, nilpotent 88
Differential system, reducible 280
Differential system, trivial 87
Dilogarithm 125
Discrete valuation 21
Dwork — Frobenius Theorem 156
Effective growth, Theorem of 120
Entire function 68
Equivalent norms 9
Equivalent valuations 4
Exponential series 50
Exponents of a system 113
Exponents of an operator 84 98
Extension of a valuation 17
Field 3
Frobenius automorphism 32
Fuchs’ Theorem 101
G-function xiv
G-operator xiv
G-operator, irreducible xiii
G-Series xiii 264
Galockin condition 227
Gauss norm 10
Gauss’ Lemma 10
Generic disk 93
Generic global inverse radius 226
Generic point 93
Global inverse radius 234 241
Global inverse radius, generic 226
Globally nilpotent operator 98
Hadamard product 202
Height (logarithmic absolute) 223
Height (multiplicative) 284
Hensel’s Lemma 11
Heun’s equation 157
Hypergeometric equation 150
Hypergeometric function 150
Indicial polynomial 84 98
Induced topology 3
Inertial subfield 30
Irregular singularity 101
Katz — Honda Theorem 84
Katz’s Theorem 99
Lame equation 158
Laurent series 46
Line of contact 304
Line of support 28
Liouville number (p-adic) 200
Logarithm 38 102
Matrix solution 87
Maximum Modulus Principle 116
Meromorphic function 68 117
Monodromy map 100
Newton polygon of a Laurent series 47
Newton polygon of a polynomial 24
Newton polygon of a power series 42
Newton’s Lemma 13
Nilpotent, differential module 88
Nilpotent, differential operator 81
Nilpotent, differential system 88 (see also “Globally nilpotent operator”)
Norm 8
Normed space 8
Order of an operator 79
Order, function 24
Ordinary point of a system 170
Ostrowski’s Defect Theorem 21
p-adic, analytic function 117
p-adic, entire function 68
p-adic, integer 7
p-adic, Liouville number 200
p-adic, meromorphic function 68
p-adic, number 7
p-adic, valuation 6
Prepared eigenvalues 106
Prime 222
Prime, complex 223
Prime, finite 222
Prime, infinite 222
Prime, real 223
Product formula 223
Radius of convergence, additive 42
Radius of convergence, of a differential system 94
Radius of convergence, of a Laurent series 254
Radius of convergence, of a power series 41
Ramification index 19
Reducible system 280
Regular singularity of a system 101 113
Regular singularity of an operator 84 98
Relative degree 19
Residue field 5
Rouche’s Theorem 131
Shearing transformation 105 169
Shidlovsky’s Lemma 270
Siegel’s Lemma 284
Singular point of a system 171
Singularity 171
Singularity, apparent 171
Singularity, trivial 171
Size of a local solution 243
Size of a matrix 227
Splitting of an operator 81
Tamely ramified 34
Taylor’s Formula 12
Teichmiiller representative 56
Totally ramified extension 30
Trivial character 56
Trivial differential operator 79
Trivial differential system 87
Trivial singularity 171
Trivial valuation 3
Truncation operator 288
Type of a number 199
Uniform part 108
Unimodular matrix 162
Unramified extension 30
Valuation 3
Valuation group 5
Valuation ideal 5
Valuation ring 5
Valuation, p-adic 6
Valuation, trivial 3
Wildly ramified 34
Wronskian, determinant 77
Wronskian, matrix 77
Zeta function 61
Реклама