Авторизация
Поиск по указателям
Bach E., Shallit J. — Algorithmic Number Theory (том 1)
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Algorithmic Number Theory (том 1)
Авторы: Bach E., Shallit J.
Аннотация: "[Algorithmic Number Theory] is an enormous achievement and an extremely valuable reference." — Donald E. Knuth, Emeritus, Stanford University
Algorithmic Number Theory provides a thorough introduction to the design and analysis of algorithms for problems from the theory of numbers. Although not an elementary textbook, it includes over 300 exercises with suggested solutions. Every theorem not proved in the text or left as an exercise has a reference in the notes section that appears at the end of each chapter. The bibliography contains over 1,750 citations to the literature. Finally, it successfully blends computational theory with practice by covering some of the practical aspects of algorithm implementations. The subject of algorithmic number theory represents the marriage of number theory with the theory of computational complexity. It may be briefly defined as finding integer solutions to equations, or proving their non-existence, making efficient use of resources such as time and space. Implicit in this definition is the question of how to efficiently represent the objects in question on a computer. The problems of algorithmic number theory are important both for their intrinsic mathematical interest and their application to random number generation, codes for reliable and secure information transmission, computer algebra, and other areas. The first volume focuses on problems for which relatively efficient solutions can be found. The second (forthcoming) volume will take up problems and applications for which efficient algorithms are currently not known. Together, the two volumes cover the current state of the art in algorithmic number theory and will be particularly useful to researchers and students with a special interest in theory of computation, number theory, algebra, and cryptography.
Язык:
Рубрика: Математика /Теория чисел /Вычислительная теория чисел /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1996
Количество страниц: 516
Добавлена в каталог: 21.05.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
50—52 278
58 59 63 66 151
12 46—47 49 51
-complete 12 47—49 147
-completeness 7 16 47
-hard 3
45 46 51
-complete 56 65
50—52 61 64 278
51 52 278
2-regular sequence 338
3-conjunctive normal form 48
3-SAT 48
Abbott, W.L. 334
Abel's identity 25 26 38
Abel, N.H. 369
Abelian groups 30 116 138
Abelian groups, fundamental theorem of 138 152
Abramov, S.A. 98
Absolute Berlekamp algebra 164 189 190
Absolutely irreducible 136
Abundant number 93 94
Acceptance 45
Acyclic 57
Adams, W.W. 314 379 382
Addition chains 121
Additive number theory 259
Adleman — Manders — Miller algorithm 161
Adleman, L.M. 13 14 17 64 65 96 122 160 194 195 200 266 285 294 311 316
Admissible sequence 226 243 258
Agnew.G.B. 351
Agou, S. 197
Aho, A.V. xiii 150 152 326 345
Aieilo, W. 121
Aitken, A.C 347
Akbik, S. 350
Akl, S.G. 15
Akushskit, I.Ya. 312
Alagic, S. 99
Albert, A.A. 4 14 39 148 344 350
Alford, W.R. 251 276 313 315 316
algebraic 33
Algebraic integers 227
Algebraic number theory xiii 227—233 260—263 266 285
Algebraic number theory, computations 260
Algorithmic number theory xiv 1 2 9
Algorithms, Atlantic City 51 52 65 278 279 305
Algorithms, Las Vegas 51 52 65 168 278 279 293
Algorithms, Monte Carlo 51 52 65 278 279
Algorithms, polynomial-time 12
Algorithms, randomized 12
Alia,G. 121
ALICE 118
Allard, P.E. 355
Allouche. J.-P. xv xvi 150 338 339
Alphabet 44
AMM algorithm 160 183
Amo, S. 314 382
Amon, D. 196
Anderson, S.F. 66
Angluin, D. 353
Ankeny's theorem 178 245 253
Ankeny's theorem for number fields 231 262 263
Ankeny's theorem, explicit version 235
Ankeny, N.C 218 245 253
Ansari, A.R. 318
Anti-Chinese remainder theorem 107 122
Apostol, T.M. 38 246 323 335 367 368
Appel, K.I. 2
Approximate equality 26 29
Arbib, M.A. 99
Archibald, R.C. 14 312
Arithmometer 6 15
Arnault, F. 314
Artin symbol 230 262
Artin — Schreier polynomials 179 193
Artin — Scnreier equation 348 362
Artin — Whaples approximation theorem 118 342
Artin's conjecture 152 221 227 255—256
Artin's conjecture for inlinitely many bases 222 256
Artin's conjecture for number fields 263
Artin's conjecture for polynomials 135
Artin's conjecture, prime tuples and 256
Artin's constant 256
Artin's constant, complexity of 256
Artin, E. 118 148 149 152 153 205 221 255 262 342 345 348 353 362
Arwin, A. 196
Aryabhata 4 14
Aryabhatiya 4 98
Asano, Y. 351
Ash,D.W. 351
Associates 32
Associative law 30
Asymptotic differentiation 238
Asymptotic growth of functions, notation for 25
Asymptotic integration 27—28 39
Atkin, A.O.L. 13 314 353
Atlantic City algorithms 51 52 65 278 279 305
Augustine, St. 273
Automatic sequences 150
Averbuch, A. 152
Avizienis, A. 346
Ayoub, R.G. 15
Babai, L. 65
Babbage, H.P. 15
Baby-step giant-step algorithm 161
Bach, E. 99 153 195 198 200 201 253 255 256 264 325 326 328 332 344 352 353 356 359 369—371 373 379 386
Bachmann, P. 38 96 123 246 344
Backlund, R.J. 240 243 249 257 369 374
Bahbage, C. 6
Baillie, R. 253 305 314 382
Baker, C.L. 310
Baker, P.W. 120
Baker, R.C 225 257
Balasubramanian, R. 2 13 310
Bang, T. 318
Bannon, P.J. 14
Baratz, A.E. 315
Barlow. P. 14 96
Bartec, T.C. 148
Baruah, S.K. 342
Basis-factor algorithm 85
Bassalygo, L.A. 150
Bateman — Hom conjecture 259
Bateman, P.T. 14 259 375
Batui, C. 11
Baum, U. 152
Bays, C. 297 317
Bcntardi, D. 11
Beame, P.W. xv 65
Beard. J.T.B., Jr. 196
Beauchemin, P. 316
Beeger, N.G.W.H. 313
Beiler. A.H. 312
Bell, E.T. 7 15
Ben-Or algorithm 359
Ben-Or, M. 196 198 355 356 359
Benaissa, M. 148
Bengelloun, S.A. 317
Beniley, J.L. 96
Benin, P. 121
Benrand's postulate 225 238
Benrand's postulate for arithmetic progressions 367
Bergeron, R 121
Berlekamp algebra 164 190
Berlekamp algebra, absolute 164 189 190
Berlekamp algorithm 164
Berlekamp's algorithm 164 167 189 190
Berlekamp's algorithm, running time of 165
Berlekamp, E.R. 148 149 164 195—197 200 347 348 352 354 356
Berndt, B.C. 363
Bernoulli numbers 38 240
Bernstein, D. 99 326
Bernstein, L. 98
Berstel, J. 121
Bertrand, J. 225 238 367
Beth, T. 148 351
Bhargava, V.K. 148 351
Bicknell, M. 314 381
Bicycle-chain sieve 9 16
Biermann, O. 347
Biermann. K.-R. 309 310
Big-O notation 25 37 38 42 246
Big-omega notation 25 38
Big-theta notation 25 38
Bilharz, H. 152
Binary gcd algorithm 82—84 92 99
Binary gcd algorithm for polynomials 149
Binary gcd algorithm, extended 93
Binary gcd algorithm, variants of 93
Binary Jacobi algorithm 343
Binary method 102 121
Binary search 48
Binel form for Fibonacci numbers 330
Binet, J.P.M. 98 330
Binomial coefficients 35
Binomial equations in finite fields 155—163 189 195
Birch, B.J. 1 13
Birkhoff, G. 13 39
Bitlingsley. P. 248
Blake, I.E. 351
Blakley, G.R. 120 343
Blankinship, W.A. 96
Bleichcnbacher, D. 314
Block designs 196
Blokh, E.L. 196
Blum, M. xv 98
Blundon, W.J. 257—258
Bob 118
Boeffgen, R. 361
Bohman. J. 258 318 365 369
Bohr, H. 246
Bojanczyk, A.W. 98
Bokhari, S.H. 318
Bombieri, E. 251
Bond, D.J. 316
Boolean circuits 58 148
boolean formulas 48
Boos, P. 360
Boraing, A. 312
Borcl, E. 373 374
Borel — Cantelli lemma 373 374
Borho, W. 312
Borodin, A. 65 121 149 151 152
Borosh, I. 343
Borrell, D. 198 352
Borwein, P.B. 326
Bos, J. 121
Bose, N.K. 346
Bosma, W. 312 314 316
Bouniakowsky, V. 15 259
Bourbaki, N. 39
Boute, R.T. 38
Boyar, J. xv 148 372
Boyd, C. 315
Boys, C.V. 15
Bradley, G.R 96
Brahmagupta 4 14
Brancker, T. 1
Brassard, G. 64 316
Brauer, A. 121 318
Brenljes, A.J. 98
Brent, R.P. 39 98 99 149 249 257—259 310 317
Bressoud, D.M. xiv
Breusch, R. 320
Brewer, B.W. 312
Brezinski, C. 98
Brickell, E.F. 120 121
Briggs, W.E. 369
Brillhart, J. xv xvi 8 10 14 15 310 311 380 385
Brlek, S. 121
Brodnik, A. xv
Brooks, A.S. 245
Browder, F.E. 16
Brown, J. 309
Brown, Jr.J.L. 98
Bruckman, P.S. 314
Brun — Titchmarsh theorem 263
Brun. V. 97 206 258 263 317
Bshouty, N. 152
Buchmann, J.A. 99 200 260
Buck, R.C. 318
Buell, D.A 10 16 312
Buhl, J. 312
Buhler, J.P. 2 13 312
Bum's constant 258
Bum's constant, intractability of 258
Bumby, R.T. 353
Burgess, D.A. 123 201 253 255 373
Burthc, Jr., R.J. 253 317
Burtsev. V.M. 312
Butler, M.C.R. 196 198
Cadwell, H. 256 257
Cahen, E. 368
Calculators, mechanical 6 8 15 249
Caldwell, C.K. 312
Callan, D. 319
Calmel, J. 148 198
Calude. C. 315
Cames, R. xv
Camion, P.R. 149 196
Campbell, D. 311
Campbell-Kelly, M. 16
Canonical representative 101
Canonical representative for gcd of polynomials 130
Canonical representative for multiplicative inverse 102
Cantelli, F.P. 373 374
Cantor — Zassenhaus algorithm 167—168 190
Cantor, D.G. 11 148 151 167 196 197 353 355
Capoeelli, R.M. 122
Cappello, P.R. 122
Cardano, formula of 184—185 200 363
Cardano, G. 200
Carissan, E. 8 15
Carissan, P. 8
Carlitz, L. 152 356 358 360 364
Carmichael lambda function 275
Carmichael lambda function for polynomials 194
Carmichael numbers 227 266 275—279 313 314
Carmichael numbers, infinitely many 276
Carmichael, R.D. 310 312 313
Caron, T.R. 16
Cartier, P. 123
Carvaho, J. 312
Casde, C.M.A. 97
Cassels, J.W.S. 262
Casteran, P. 121
Cataldi, P. 1 308 310
Cauchy principal value 246
Cauchy's theorem 138
Cauchy, A.L. 149 199 200 313 360 363
Caviness, B.E. 98
CayIey, A. 149
CEILING 19
Central limit theorem 256
Cerbone, G. 122
Cerlienco, L. 346
Certificate 279
Cesaro, E. 36 238 324 332 335 367
CFA algorithm 76
Реклама