Авторизация
Поиск по указателям
Bach E., Shallit J. — Algorithmic Number Theory (том 1)
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Algorithmic Number Theory (том 1)
Авторы: Bach E., Shallit J.
Аннотация: "[Algorithmic Number Theory] is an enormous achievement and an extremely valuable reference." — Donald E. Knuth, Emeritus, Stanford University
Algorithmic Number Theory provides a thorough introduction to the design and analysis of algorithms for problems from the theory of numbers. Although not an elementary textbook, it includes over 300 exercises with suggested solutions. Every theorem not proved in the text or left as an exercise has a reference in the notes section that appears at the end of each chapter. The bibliography contains over 1,750 citations to the literature. Finally, it successfully blends computational theory with practice by covering some of the practical aspects of algorithm implementations. The subject of algorithmic number theory represents the marriage of number theory with the theory of computational complexity. It may be briefly defined as finding integer solutions to equations, or proving their non-existence, making efficient use of resources such as time and space. Implicit in this definition is the question of how to efficiently represent the objects in question on a computer. The problems of algorithmic number theory are important both for their intrinsic mathematical interest and their application to random number generation, codes for reliable and secure information transmission, computer algebra, and other areas. The first volume focuses on problems for which relatively efficient solutions can be found. The second (forthcoming) volume will take up problems and applications for which efficient algorithms are currently not known. Together, the two volumes cover the current state of the art in algorithmic number theory and will be particularly useful to researchers and students with a special interest in theory of computation, number theory, algebra, and cryptography.
Язык:
Рубрика: Математика /Теория чисел /Вычислительная теория чисел /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1996
Количество страниц: 516
Добавлена в каталог: 21.05.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Dubner, R. 10 16
Dubner.H. 10 16 312 313
Duboc, C. 121
Dubois, R. 313
Ducray, S. 247
Dudley, U. 318
Duncan, R.L. 98
Dunten, B. 317
Duparc, H.J.A. 313
Dupre, A. 80 98
Dussaud. R. 313
Dynamic programming 329
Earle, J.G. 66
Eastman, W.L. 152
Eberly.W. 152
Ecker, M.W. 340
Edgar, G.A. 319
Edges 57
Edmonds, J. 12 16 64
Edwards, H.M. 38 245 246 249 251 369
Egecioglu, O. 121
Ehrman, J.R. 311 375
Eisenstein, G. 119 123 343 350
Elder, J.D. 9
Eldridge, S.E. 120 121
Elia, M. 195
Elkies, N.D. 13
Elliott, P.D.T.A. 248 249 253 255
Elliptic curve pseudoprimes 314
Elliptic curves 266
Elliptic curves, polynomial factorization and 201
Elliptic curves, square roots mod p and 195
Empty product 20
Endoes — Kac theorem 248
ENIAC 9
entropy 65
Epasinghe, P.W. 98
Eppstein, D. 64
Er, M.C. 122
ERATOSTFINES algorithm 296
Eratosthenes 236 265
Eratosthenes, sieve of 4 5 204
Erdoes, P. 121 206 246 248 249 253 257 304 313 314 335 376
ERH see extended Riemann hypothesis
Ernvall, R. 2 13
Error, one-sided 50 278
Error, two-sided 51
Escott, EB. 122 314 382
Estes, D.R. 123
Euclid 1 4 20 96 204 205 273 303
Euclidean algorithm 41 67—70
Euclidean algorithm for polynomials 127—130 143
Euclidean algorithm for polynomials, running time 149
Euclidean algorithm for polynomials, uniqueness 347
Euclidean algorithm for resultants 347
Euclidean algorithm in real quadratic fields 98
Euclidean algorithm, bit complexity of 68 70
Euclidean algorithm, extended 4 70—73 93
Euclidean algorithm, least-remainder variation 79—82 98
Euclidean algorithm, musical theory and 97
Euclidean algorithm, number of division steps 41
Euclidean algorithm, subtractive version 97
Euclidean algorithm, worst-case analysis 69
Euclidean Domain 98
EUCLUD algorithm 67
Euler liars 279
Euler phi function 21
Euler phi function for polynomials 194
Euler phi function, estimates 237
Euler phi function, explicit bounds for 234
Euler phi function, formula for 35
Euler pseudoprimes 277 305 313
Euler witness 280
Euler — Maclaurin expansion 39
Euler — Maclaurin expansion for gamma function 240
Euler — Maclaurin expansion for zeta function 240 250
Euler's constant 26 39
Euler's criterion 110 122 143 178 186 242 277
Euler's summation formula 26 36 207
Euler's theorem 35 101
Euler, L. 2 4 5 14 15 21 26 38 39 98 111 121 122 205 242 245 250 265 273 303 309 347 375
Evans, R.J. 363
Evdokimov, S.A. 199—201
EVEH NUMBERS 45 60
Even pseudoprimes 313
Even, S. 121
Ewing. J. 309
Expected polynomial time 51
Explicit formulas 213 250
Exponent of a group 31 275
Exponent of a permutation group 238
Exponent of a polynomial 135
Exponential integral 365
EXTENDED EUCLID algorithm 72
Extended Euclidean algorithm 4 70—73 93
Extended Riemann hypothesis 123 159 178 182 185 187 205 216 239 251 252 314
Extended Riemann hypothesis, applied to algorithms 252
Extended Riemann hypothesis, empirical evidence for 252
Extended Riemann hypothesis, heuristic argument for 241
Extended Riemann hypothesis, true on average 251
Extended Riemann hypothesis, weak 253
Extended Riemann hypothesis, П formula for 241
Extension 33
Extension, finite 33
Extension, separable 143
Factor 48 307
Factor refinement see gcd-free basis
Factor stencils 9 15
Factor tables 13
Factor tables for polynomials 196
Factorization into products of primes 20
Factorization mod 174—175
Factorization of matrices 195
Factorization of polynomials over finite fields 155 163—168 195—198 200—201
Factorization of polynomials over finite fields, distinct degree 171
Factorization of polynomials over finite fields, special cases 200 201
Factorization over p-adic numbers 176 199
Factorization, integer 1 3 7 9 42 47 148
Factorization, integer, continued-fraction algorithm 10
Factorization, integer, Morrison — Brillhart algorithm 10
Factorization, integer, quadratic sieve algorithm 10
Factorization, integer, trial division 265
Factorization, integer, uniquc 20 35 38
Factorization, polynomial 3
Factorization, polynomials over finite fields 125 189—190
Factorization, polynomials over finite fields, distinct degree 198
Faddeev, D.K. 196
Fagin, B.S. 64
False witness 314
Fast Fourier Transform 150 151 369
Fateman, R.J. 121
Feit, W. 198
Felkel, A. 6
Feller, W. xiii 247 373 374
FELLOWS — KOBLITZ algorithm 268
Fellows, M.R. 311
Fendel, D. 15
Feng. G.-L. 148
Fenn, S.T.J. 148
Ferguson, H.R.P. 98
Fermat liars 275 305
Fermat numbers 10 267 272 273
Fermat numbers, factorization of 119
Fermat primes 243
Fermat's theorem 21 35 38 101 265
Fermat's theorem, primality proofs and 266—272
Fermat, P. 2 4 14 38
Ferrier, A. 10 16 309
Feynman, R.P. 243 376
FFT see fast Fourier transform
fibonacci 265
Fibonacci numbers 37 68 95 122
Fibonacci numbers, Binet form for 330
Fibonacci numbers, computing large 60 103 104
Fich, F.E. 151
Ficken, F.A. 96
Fiduccia, C.M. 122 338
Field of algebraic numbers see number fields
Field, definition of 33
Field, extension 33
Field, extension, normal 230
Field, finite see finite fields
Fiirer,M. 315
Finck, P.J.E. 96 97
Findlay, P.A. 122
Finite abelian groups, fundamental theorem of 31
Finite automata 150 362
Finite characteristic 34
Finite extension 33
Finite fields 125—153 155—201 344—352
Finite fields, construction of 155 171—173 178—182 193 198—199
Finite fields, existence of 125
Finite fields, hardware for 132 351
Finite fields, inversion 143
Finite fields, isomorphism between 172—173 192 199
Finite fields, models of 126 145—148
Finite fields, normal bases for 191
Finite fields, parallel algorithms for 151
Finite fields, software for 148
Finite fields, uniqueness of 126
Finite groups 30
Finite groups, cyclic 147
Finitely generated 30
Finn, J. 65 315
Fischer, P.C. 318
Fitch, J. 325
Flad, J.-P. 15
Fleischmann, P. 356
Fletcher, C.R. 38
Flipponi, P. 314
FLOOR 19
Floyd, R.W. 95 335
Fogels, E.K. 263
Forcade, R.W. 98
Ford, K. 335
Format's last theorem 2 13
Format's last theorem, heuristic arguments 243 376
Formula 299
Formula, good 300
Four-color conjecture 2
Fraleigh, J.B. 39
Frame, J.S. 98 123
Frandsen, G.S. xv 148 198 350 356
Fredman, M.L. 152 385
Fridlender, V.R. 372
Friedl, K. 372
Friedlander, J.B. 261 373
Friedmann, A. 195
Frobenius automorphism 133
Frobenius map 133 134 136 143 159 164—166 180 196
Frobenius map, absolute 136 189
Frobenius, F.G. 15 152
Froeberg, C.E. 14 369
Froehlich, A. 148 262
Fruechtl, K. 258
Function, multiplicative 23
Function, polynomial-time computable 49
Fundamental Theorem of Arithmetic 20 35 38
Fundamental theorem of finite abelian groups 31
Fung, G.W. 15
Furry, W.R. 365
Gaal, L. 152
Gage, P. 309
Gallagher, P.X. 251
Galois group 34 133
Galois group, relative 133
Galois theory xiii 133 227
Galois, E. 15 148 197 198
Gandhi, J.M. 306 318 382
Gao, S. 351 356
Gardiner, V. 249
Gardner, M. 15 96 332
Garey, M.R. xiii 64
Gate 58
Gauss sums 285 286 316
Gauss's lemma 117
Gauss, C.R. 1 5 15 38 106 111 122 152 194 197 199 200 204 205 236 245 253 265 310 344 363
Gaussian integers 38 98
Gaussian periods 147 179 181 193 200 378
GCD see greatest common divisor
gcd-free basis 84 326
GCD-FREE Basis algorithm 89
gcd-free basis for polynomials 143 344
Ge, G. 99
Gegenbauer. L. 198 247 383
Geiselmann, W. 351
Gel'fond, A.O. 246
Genaille, H. 7 15
Generalized Riemann hypothesis 64 168 178 182 184 193 194 205 229 252 255 285 292
Generalized Riemann hypothesis, empirical evidence for 261
Generating set, bounds for, assuming ERH 220
Generating set, bounds for, averaged 255
Generating set, bounds for, heuristics 242 253
Generator 116
Gennero, M.C. 197
Gentleman, W.M. 121
Gerardin, A. 7—8 15
Gerlach, H.W. 316 380
Gibson, J.K. 120
Giesbrecht, M 197 350 356 369 370
Gilbert, W. xv
Gill, J. 65 327
Gillies, D.B. 16 309 311 375
Gioia, A.A. 121
Glaisher, J.W.L. 13 15 257 258
Godel's thesis 11
Goedel, K. 11 12 16 310
Goel, A. xv
Goettfert, R. 356
Gohl, G. 365
Goldbach's conjecture 1 259
Goldbach, C. 259
Goldreich. O. 96
Goldschmidt, R.E. 66
Goldstein, C. 38
Goldstein, L.J. 260 261 263
Goldstine, H.H. 14
Goldston, D.A. 257
Gollmann. D. 351
Golobew, W.A. 259
Golomb, S.W. 95 149 197 257 317 318 335 382
Golovanov, P.N. 151
Good, L.J. 248 311 375
Goodman, A.W. 99
Goodslein, R.L. 318
Gordon, D.M. 121 314
Gordon, J.A. 317 334 352
Goutier, C. 316
Graduate course outline xiii
Graham, R.L. 38 39 339
Graham, S.W. 313
Gram, J.P. 249 250 256 365
Granville, A. 13 251 256 257 276 313 315 316
Greatest common divisor 3 34 67—99 186
Greatest common divisor for polynomials 128 360
Greatest common divisor on rational numbers 34
Greatest common divisor, analogue method for 96
Greatest common divisor, billiards and 92
Greatest common divisor, binary algorithm for 82—84 92 99
Greatest common divisor, binary algorithm for, variants of 93
Реклама