Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bach E., Shallit J. — Algorithmic Number Theory (том 1)
Bach E., Shallit J. — Algorithmic Number Theory (том 1)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Algorithmic Number Theory (том 1)

Авторы: Bach E., Shallit J.

Аннотация:

"[Algorithmic Number Theory] is an enormous achievement and an extremely valuable reference." — Donald E. Knuth, Emeritus, Stanford University
Algorithmic Number Theory provides a thorough introduction to the design and analysis of algorithms for problems from the theory of numbers. Although not an elementary textbook, it includes over 300 exercises with suggested solutions. Every theorem not proved in the text or left as an exercise has a reference in the notes section that appears at the end of each chapter. The bibliography contains over 1,750 citations to the literature. Finally, it successfully blends computational theory with practice by covering some of the practical aspects of algorithm implementations. The subject of algorithmic number theory represents the marriage of number theory with the theory of computational complexity. It may be briefly defined as finding integer solutions to equations, or proving their non-existence, making efficient use of resources such as time and space. Implicit in this definition is the question of how to efficiently represent the objects in question on a computer. The problems of algorithmic number theory are important both for their intrinsic mathematical interest and their application to random number generation, codes for reliable and secure information transmission, computer algebra, and other areas. The first volume focuses on problems for which relatively efficient solutions can be found. The second (forthcoming) volume will take up problems and applications for which efficient algorithms are currently not known. Together, the two volumes cover the current state of the art in algorithmic number theory and will be particularly useful to researchers and students with a special interest in theory of computation, number theory, algebra, and cryptography.


Язык: en

Рубрика: Математика/Теория чисел/Вычислительная теория чисел/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1996

Количество страниц: 516

Добавлена в каталог: 21.05.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Dubner, R.      10 16
Dubner.H.      10 16 312 313
Duboc, C.      121
Dubois, R.      313
Ducray, S.      247
Dudley, U.      318
Duncan, R.L.      98
Dunten, B.      317
Duparc, H.J.A.      313
Dupre, A.      80 98
Dussaud. R.      313
Dynamic programming      329
Earle, J.G.      66
Eastman, W.L.      152
Eberly.W.      152
Ecker, M.W.      340
Edgar, G.A.      319
Edges      57
Edmonds, J.      12 16 64
Edwards, H.M.      38 245 246 249 251 369
Egecioglu, O.      121
Ehrman, J.R.      311 375
Eisenstein, G.      119 123 343 350
Elder, J.D.      9
Eldridge, S.E.      120 121
Elia, M.      195
Elkies, N.D.      13
Elliott, P.D.T.A.      248 249 253 255
Elliptic curve pseudoprimes      314
Elliptic curves      266
Elliptic curves, polynomial factorization and      201
Elliptic curves, square roots mod p and      195
Empty product      20
Endoes — Kac theorem      248
ENIAC      9
entropy      65
Epasinghe, P.W.      98
Eppstein, D.      64
Er, M.C.      122
ERATOSTFINES algorithm      296
Eratosthenes      236 265
Eratosthenes, sieve of      4 5 204
Erdoes, P.      121 206 246 248 249 253 257 304 313 314 335 376
ERH      see extended Riemann hypothesis
Ernvall, R.      2 13
Error, one-sided      50 278
Error, two-sided      51
Escott, EB.      122 314 382
Estes, D.R.      123
Euclid      1 4 20 96 204 205 273 303
Euclidean algorithm      41 67—70
Euclidean algorithm for polynomials      127—130 143
Euclidean algorithm for polynomials, running time      149
Euclidean algorithm for polynomials, uniqueness      347
Euclidean algorithm for resultants      347
Euclidean algorithm in real quadratic fields      98
Euclidean algorithm, bit complexity of      68 70
Euclidean algorithm, extended      4 70—73 93
Euclidean algorithm, least-remainder variation      79—82 98
Euclidean algorithm, musical theory and      97
Euclidean algorithm, number of division steps      41
Euclidean algorithm, subtractive version      97
Euclidean algorithm, worst-case analysis      69
Euclidean Domain      98
EUCLUD algorithm      67
Euler liars      279
Euler phi function      21
Euler phi function for polynomials      194
Euler phi function, estimates      237
Euler phi function, explicit bounds for      234
Euler phi function, formula for      35
Euler pseudoprimes      277 305 313
Euler witness      280
Euler — Maclaurin expansion      39
Euler — Maclaurin expansion for gamma function      240
Euler — Maclaurin expansion for zeta function      240 250
Euler's constant      26 39
Euler's criterion      110 122 143 178 186 242 277
Euler's summation formula      26 36 207
Euler's theorem      35 101
Euler, L.      2 4 5 14 15 21 26 38 39 98 111 121 122 205 242 245 250 265 273 303 309 347 375
Evans, R.J.      363
Evdokimov, S.A.      199—201
EVEH NUMBERS      45 60
Even pseudoprimes      313
Even, S.      121
Ewing. J.      309
Expected polynomial time      51
Explicit formulas      213 250
Exponent of a group      31 275
Exponent of a permutation group      238
Exponent of a polynomial      135
Exponential integral      365
EXTENDED EUCLID algorithm      72
Extended Euclidean algorithm      4 70—73 93
Extended Riemann hypothesis      123 159 178 182 185 187 205 216 239 251 252 314
Extended Riemann hypothesis, applied to algorithms      252
Extended Riemann hypothesis, empirical evidence for      252
Extended Riemann hypothesis, heuristic argument for      241
Extended Riemann hypothesis, true on average      251
Extended Riemann hypothesis, weak      253
Extended Riemann hypothesis, П$_1$ formula for      241
Extension      33
Extension, finite      33
Extension, separable      143
Factor      48 307
Factor refinement      see gcd-free basis
Factor stencils      9 15
Factor tables      13
Factor tables for polynomials      196
Factorization into products of primes      20
Factorization mod $p^n$      174—175
Factorization of matrices      195
Factorization of polynomials over finite fields      155 163—168 195—198 200—201
Factorization of polynomials over finite fields, distinct degree      171
Factorization of polynomials over finite fields, special cases      200 201
Factorization over p-adic numbers      176 199
Factorization, integer      1 3 7 9 42 47 148
Factorization, integer, continued-fraction algorithm      10
Factorization, integer, Morrison — Brillhart algorithm      10
Factorization, integer, quadratic sieve algorithm      10
Factorization, integer, trial division      265
Factorization, integer, uniquc      20 35 38
Factorization, polynomial      3
Factorization, polynomials over finite fields      125 189—190
Factorization, polynomials over finite fields, distinct degree      198
Faddeev, D.K.      196
Fagin, B.S.      64
False witness      314
Fast Fourier Transform      150 151 369
Fateman, R.J.      121
Feit, W.      198
Felkel, A.      6
Feller, W.      xiii 247 373 374
FELLOWS — KOBLITZ algorithm      268
Fellows, M.R.      311
Fendel, D.      15
Feng. G.-L.      148
Fenn, S.T.J.      148
Ferguson, H.R.P.      98
Fermat liars      275 305
Fermat numbers      10 267 272 273
Fermat numbers, factorization of      119
Fermat primes      243
Fermat's theorem      21 35 38 101 265
Fermat's theorem, primality proofs and      266—272
Fermat, P.      2 4 14 38
Ferrier, A.      10 16 309
Feynman, R.P.      243 376
FFT      see fast Fourier transform
fibonacci      265
Fibonacci numbers      37 68 95 122
Fibonacci numbers, Binet form for      330
Fibonacci numbers, computing large      60 103 104
Fich, F.E.      151
Ficken, F.A.      96
Fiduccia, C.M.      122 338
Field of algebraic numbers      see number fields
Field, definition of      33
Field, extension      33
Field, extension, normal      230
Field, finite      see finite fields
Fiirer,M.      315
Finck, P.J.E.      96 97
Findlay, P.A.      122
Finite abelian groups, fundamental theorem of      31
Finite automata      150 362
Finite characteristic      34
Finite extension      33
Finite fields      125—153 155—201 344—352
Finite fields, construction of      155 171—173 178—182 193 198—199
Finite fields, existence of      125
Finite fields, hardware for      132 351
Finite fields, inversion      143
Finite fields, isomorphism between      172—173 192 199
Finite fields, models of      126 145—148
Finite fields, normal bases for      191
Finite fields, parallel algorithms for      151
Finite fields, software for      148
Finite fields, uniqueness of      126
Finite groups      30
Finite groups, cyclic      147
Finitely generated      30
Finn, J.      65 315
Fischer, P.C.      318
Fitch, J.      325
Flad, J.-P.      15
Fleischmann, P.      356
Fletcher, C.R.      38
Flipponi, P.      314
FLOOR      19
Floyd, R.W.      95 335
Fogels, E.K.      263
Forcade, R.W.      98
Ford, K.      335
Format's last theorem      2 13
Format's last theorem, heuristic arguments      243 376
Formula      299
Formula, good      300
Four-color conjecture      2
Fraleigh, J.B.      39
Frame, J.S.      98 123
Frandsen, G.S.      xv 148 198 350 356
Fredman, M.L.      152 385
Fridlender, V.R.      372
Friedl, K.      372
Friedlander, J.B.      261 373
Friedmann, A.      195
Frobenius automorphism      133
Frobenius map      133 134 136 143 159 164—166 180 196
Frobenius map, absolute      136 189
Frobenius, F.G.      15 152
Froeberg, C.E.      14 369
Froehlich, A.      148 262
Fruechtl, K.      258
Function, multiplicative      23
Function, polynomial-time computable      49
Fundamental Theorem of Arithmetic      20 35 38
Fundamental theorem of finite abelian groups      31
Fung, G.W.      15
Furry, W.R.      365
Gaal, L.      152
Gage, P.      309
Gallagher, P.X.      251
Galois group      34 133
Galois group, relative      133
Galois theory      xiii 133 227
Galois, E.      15 148 197 198
Gandhi, J.M.      306 318 382
Gao, S.      351 356
Gardiner, V.      249
Gardner, M.      15 96 332
Garey, M.R.      xiii 64
Gate      58
Gauss sums      285 286 316
Gauss's lemma      117
Gauss, C.R.      1 5 15 38 106 111 122 152 194 197 199 200 204 205 236 245 253 265 310 344 363
Gaussian integers $(\mathbb{Z}[i])$      38 98
Gaussian periods      147 179 181 193 200 378
GCD      see greatest common divisor
gcd-free basis      84 326
GCD-FREE Basis algorithm      89
gcd-free basis for polynomials      143 344
Ge, G.      99
Gegenbauer. L.      198 247 383
Geiselmann, W.      351
Gel'fond, A.O.      246
Genaille, H.      7 15
Generalized Riemann hypothesis      64 168 178 182 184 193 194 205 229 252 255 285 292
Generalized Riemann hypothesis, empirical evidence for      261
Generating set, bounds for, assuming ERH      220
Generating set, bounds for, averaged      255
Generating set, bounds for, heuristics      242 253
Generator      116
Gennero, M.C.      197
Gentleman, W.M.      121
Gerardin, A.      7—8 15
Gerlach, H.W.      316 380
Gibson, J.K.      120
Giesbrecht, M      197 350 356 369 370
Gilbert, W.      xv
Gill, J.      65 327
Gillies, D.B.      16 309 311 375
Gioia, A.A.      121
Glaisher, J.W.L.      13 15 257 258
Godel's thesis      11
Goedel, K.      11 12 16 310
Goel, A.      xv
Goettfert, R.      356
Gohl, G.      365
Goldbach's conjecture      1 259
Goldbach, C.      259
Goldreich. O.      96
Goldschmidt, R.E.      66
Goldstein, C.      38
Goldstein, L.J.      260 261 263
Goldstine, H.H.      14
Goldston, D.A.      257
Gollmann. D.      351
Golobew, W.A.      259
Golomb, S.W.      95 149 197 257 317 318 335 382
Golovanov, P.N.      151
Good, L.J.      248 311 375
Goodman, A.W.      99
Goodslein, R.L.      318
Gordon, D.M.      121 314
Gordon, J.A.      317 334 352
Goutier, C.      316
Graduate course outline      xiii
Graham, R.L.      38 39 339
Graham, S.W.      313
Gram, J.P.      249 250 256 365
Granville, A.      13 251 256 257 276 313 315 316
Greatest common divisor      3 34 67—99 186
Greatest common divisor for polynomials      128 360
Greatest common divisor on rational numbers      34
Greatest common divisor, analogue method for      96
Greatest common divisor, billiards and      92
Greatest common divisor, binary algorithm for      82—84 92 99
Greatest common divisor, binary algorithm for, variants of      93
1 2 3 4 5 6 7 8 9
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте