Авторизация
Поиск по указателям
Bach E., Shallit J. — Algorithmic Number Theory (том 1)
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Algorithmic Number Theory (том 1)
Авторы: Bach E., Shallit J.
Аннотация: "[Algorithmic Number Theory] is an enormous achievement and an extremely valuable reference." — Donald E. Knuth, Emeritus, Stanford University
Algorithmic Number Theory provides a thorough introduction to the design and analysis of algorithms for problems from the theory of numbers. Although not an elementary textbook, it includes over 300 exercises with suggested solutions. Every theorem not proved in the text or left as an exercise has a reference in the notes section that appears at the end of each chapter. The bibliography contains over 1,750 citations to the literature. Finally, it successfully blends computational theory with practice by covering some of the practical aspects of algorithm implementations. The subject of algorithmic number theory represents the marriage of number theory with the theory of computational complexity. It may be briefly defined as finding integer solutions to equations, or proving their non-existence, making efficient use of resources such as time and space. Implicit in this definition is the question of how to efficiently represent the objects in question on a computer. The problems of algorithmic number theory are important both for their intrinsic mathematical interest and their application to random number generation, codes for reliable and secure information transmission, computer algebra, and other areas. The first volume focuses on problems for which relatively efficient solutions can be found. The second (forthcoming) volume will take up problems and applications for which efficient algorithms are currently not known. Together, the two volumes cover the current state of the art in algorithmic number theory and will be particularly useful to researchers and students with a special interest in theory of computation, number theory, algebra, and cryptography.
Язык:
Рубрика: Математика /Теория чисел /Вычислительная теория чисел /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1996
Количество страниц: 516
Добавлена в каталог: 21.05.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Landau, E. 37—39 205 228 238 246 247 251 255 260 261 324 346 366—368
Lander, L.J. 2 13 243 257 375
Landrock. P. 317
Landry, F. 311
Landsberg, G. 352
Lang, S. 39 148 199 260 261 344 349 352 360 377
Langemyr, L. 152
Language 44
Language classes 44—46
Language, accepted by algorithm 45
Lapidus, M.L. 249
Laplace transforms 213
Laplace, P.S. 374
Larsen, G.N. 148
Larson, R.G. 314
Las Vegas algorithms 51 52 65 157 168 278 279 293
Law of Large Numbers 212 247
Lawrence, F.W. 8 15
Laws, Jr.B.A. 148
Lazars, D. 99 196 347
Lazarus, R, 249
Le-Ngoc, T. 348 354
Least common multiple 34
Least common multiple for several inputs 34
Least common multiple of binomial coefficients 35
Least common multiple on rational numbers 34
Least common multiple, computation of 20
Least common multiple, definition of 19
Least common multiple, formula for 34
Least common multiple, relationship to gcd 34
Least integer function 19
Lebesgue, V.-A. 119 123 319 343
Lebmer, D.H. 2 8—11 13—16 97 171 194 197 249 255 265 267 279 300 309—314 317 318 358 363 365 380
Lebon, E. 13
Legendre symbol 101 110—111 123 141
Legendre symbol, efficient computation of 111
Legendre symbol, pseudo-random behavior of 254
Legendre, A.M. 15 111 121—123 195 199 204 205 215 245 251 257 306 320 353 365
Leger, E. 96
Lehman, R.S. 2 13 249
Lehmanti, D.J. 305 315 382 386
Lehmer, D.N. 1 9 13 15 16 310 365
Lehmer, E. 2 13 14 255 314 352 363
Leibniz, G.W. 6 38
Leighton, F.T. 311 329
Leiserson, C.E. xiii 328
Lejeune-Dirichlet, P.G. see Dirichlet P.G.L.
Lemer, M 16
Lemoine, E. 326
Lempel, A. 350
Lenstra, A.K. xv 10 197 201 285 316
Lenstra, Jr.H.W. xv 1 13 99 121 148 194 199—201 256 260 285 310 311 316 326 344 350 351 356 373 375 379 380 385 386
Leonard, P.A. 152
Leong, B. 121
Leung, J.Y.-T. 342
Levin, G. 122
Levin, L. 64
Levy, P. 258
Lewis, D.J. 199
Li, X.M. 196
Liang, J.Y.Y 369
Liars 314
Liars, Euler 279
Liars, Fermai 275 305
Liars, strong 281 282
Lidl, R. 148 194 199 314 362
Lieberherr, K. 315
Lieuwens, E. 314
Lifchitz, H. 310
Lilley, S. 15
Lin-Kriz, Y. 96
Lind, D. 314 381
Lindemann, F.A. 319 see Lord
Lindgren, H. 318
Lindhurst, S. 194
Linear algebra, complexity of 195 376
Linear congruemial generator 115
Linear recurrence 115 122 131
Linnik's theorem 223 241 242 245 256
Linnik's theorem for number fields 231 263
Linnik's theorem for number fields, explicit version 235
Linnik's theorem, assuming ERH 223
Linnik's theorem, assuming ERH, explicit version 235
Linnik, Yu.V. 223 241 242 245 256
Lipton, R.J. 121 122
Litow, B.E. 148 149 151
Littlewood, J.E. 38 247 248 252 258 259 366
Liule-o notation 25 38
Liverance, E. 379
Livingston, M.L. 263
Lloyd, D.B. 196
Lloyd, S.P. 359
LMO algorithm 302
Loeh, G. 313
Log-space uniform 58
Logarithmic integral 209 246 365 367
Looff, W. 308 309
Loop unrolling 96
Loos, R.G.K. 123 198
Lovasz, L. 201
Low, M.E. 252
Lubiw, A. 329
Lucas numbers 305
Lucas pseudoprimes 314
Lucas sequences 195
Lucas — Lehmer test 273—275
Lucas, E. 6 7 9 10 15 265 267 309—312
Lueh, G. 259
Lugiez, D. 361
Luk, F.T. 99 149
Lund, C. 372
Luneburg, H. 356
Luo, X. 318
Lutz, D. 64
Ma, K. 149
Mac Lane, S. 39
Machines, Cray XMP 10
Machines, ENIAC 9
Machines, EPOC 10
Machines, IBM 360 11
Machines, microcomputers 16
Machines, Sun 10
Machines, supercomputers 16
Machines, SWAC 10
MacLagan-Wedderbum, J.H. 148
Maclaurin, C. 39
Macsyma 11
Maeder, R.E. 63 122
Mahnke, D. 379
Maier, R 249 256 257
Mairson, H.G. 317
Majewskt, B.S. 96
Makowski, A 314
Mallette, R. 121
Malm, D.E.G. 305 315 381
Malo, E. 305 314 381 382
Malula, D.W. 99
Manasse, M. 10
Mandelbaum, D.M. 99
Manders, K.L. 14 64 160 194 195
Mann, H.B. 196 379
Mansour, Y. 65 96
Many-one reductions 47 49 64 353
Mapes, D.C. 318
Maple 11
Marci, A.E. 310
Marcus, D.A. 98 260
Marsaglia, G. 3 14
Marsh, D.C.B. 319
Martinelli, E. 121
Mason, T.E. 8 15
Massey, J.L. 149 351
Massias, J.P. 368
Mathcws,G.B. 200 318
Mathematica 1
Matiyasevich, Yu.V. 12 14 17 250 371
Matrices, circulant 144
Matrices, computing powers of 144
Matrices, enumeration by rank 352
Matrices, multiplication of 55
Matrices, multiplication, complexity 352
Matrices, nonsingular 147
Matsumoto, T. 121
Matthews, K.R. 96
Matthews, R.W. 148 314
Maurer, U.M 314 317
Maximal ideals 32
Mays, M.E. 98
McCarthy, D.P. 121
McCoy, N. 352
McCurdy, K.J. 10 16
McCurley, K.S. xv 121 242 256 263 264 373
McDaniel, W.L. 314
McDonald, B.R. 152 352 360
McEIiece, R.J. 352 355
Mclnnes, J. 369 370
McMillan, E.M. 39
Mead, C.A. 65
Meertens, L. 38
Meidanis, J. 122 123
Meijer, A.R. 97
Meissel, E.D.F 300 318
Meller, N.A. 249
Menezes, A.J. xv 196 197 201
Mersenne numbers 5 6 9 267 272—274
Mersenne numbers, factorization of 119
Mersenne numbers, Lucas' test for primality of 7 15
Mersenne numbers, strong prime tuples conjecture and 376
Mersenne primes 10 243 274 303
Mersenne primes, density of 375
Mersenne primes, largest 10
Mersenne, M. 4 5 14
Mertens's conjecture 248
Mertens's theorem 205 210 237 247
Mertens's theorem as sieve 247
Mertens's theorem for arithmetic progressions 251
Mertens's theorem, assuming Riemann hypothesis explicit bounds 249
Mertens's theorem, explicit version 234
Mertens, E 2 205 209 237 245 332
Mertens, S. 312
Metropolis, N. 249
Metsankyla, T. 2 13
Meyer, A.R. 64 65 122
Meyer, R 351
Michel, P. 65
Microcomputers 16
Mignotte, M. 63 194 196 198 201 315
Mihailescu, P. 311
Miller — Rabin algorithm 282
Miller — Rabin test 281—283 294 304 314
Miller — Rabin test, compared to Solovay — Strassen 283
Miller, G.L 12 96 99 115 160 194 195 284 314 315 386
Miller, J.C.P. 122 255 309 338
Miller, V.S. 300 318 356 365 385
Miller, W. 368
Milller, J. 308
Mills, W.H. 306 318 382
Minimal polynomials 34 134 144 146 152 352
Minimal polynomials for primitive elements 352
Minkowski, H. 261
Minsky, M.L. 310 327—329
Mirimanoff, D. 356
Misra, J. 317 318
Mitchell, H.H. 260
Mitrinovic, D.S. 263
Mitsui, Т. 261
Miyamoto, I. 314
Mo, Z. 314
MOD 21
Modular arithmetic 21
Modulus 115
Moebius function 2 23 38 134
Moebius function for polynomials 191
Moebius function in finite fields 132 143
Moebius function, parallel complexity of 121 151
Moebius inversion 23 35 135
Moebius, A.E 38 191
Moenck, R.T. 97 150 201 347
Monagan, M.B. 13
Monet, S. 64
Monic 33
Monier, L. 305 314
Monoids 30
Monte Carlo algorithms 51 52 65 278 279
Montgomery, H.L 250 253 263 379
Montgomery, P.L. xv 120 151
Montolivo, E. 352
Moore, E.H. 148
Moore, E.R. 64
Moore, T.E. 99
Morain, E. 15 121 313
Moral certainty 310
Moran, A. 259
Moree, P. 367
Morehead, J.C. 312
Morii, M. 148
Morita, H. 120
Moroz, B.Z. 253
Morrison, D.R. 148
Morrison, J.F. 199
Morrison, M.A. 10 11 311
Moser, L. 317 318 325
Most-wanted number 9
Motwani, R. 65
Mueller, W.B. 314
Muir, Т. 98
Mullin, R.C. 351
Multiplication, fast algorithms for 60 63
Multiplicative function 23
Multiplicative inverse in 102
Multiplier 115
Munro, L. 152
Murala, L. 255 256
Musser, D.R. 249
Muurer, W.D. 123
Nagasaka, K. 344
Nair, M. 246
Naive bit complenity 7 10 42—44 59
Naive space complexity 55
Narkiewicz, W. 252 255 260
National Security Agency 4
Nazarevsky 312
Nebgen, E. 312
Needham, J. 122 313
Nelson, H.L. 309
Nemeth, E. xv
Netto, E. 149
Neudccker, W. 249
Neukirch, J. 262
Neumann, B.H. 382
Nevin, N. 64
Newman, D.J. 247
Newton, I. 348
Newton, method of 176
Nickel, L 16 309
Nicolas, J.-L. 14 263 310 316 368
Nicomachus 14
Niebuhr, W 313
Niederreiter factorization algorithm 190
Niederreiter, H.N. 148 194 199 356 362
Реклама