Авторизация
Поиск по указателям
Bach E., Shallit J. — Algorithmic Number Theory (том 1)
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Algorithmic Number Theory (том 1)
Авторы: Bach E., Shallit J.
Аннотация: "[Algorithmic Number Theory] is an enormous achievement and an extremely valuable reference." — Donald E. Knuth, Emeritus, Stanford University
Algorithmic Number Theory provides a thorough introduction to the design and analysis of algorithms for problems from the theory of numbers. Although not an elementary textbook, it includes over 300 exercises with suggested solutions. Every theorem not proved in the text or left as an exercise has a reference in the notes section that appears at the end of each chapter. The bibliography contains over 1,750 citations to the literature. Finally, it successfully blends computational theory with practice by covering some of the practical aspects of algorithm implementations. The subject of algorithmic number theory represents the marriage of number theory with the theory of computational complexity. It may be briefly defined as finding integer solutions to equations, or proving their non-existence, making efficient use of resources such as time and space. Implicit in this definition is the question of how to efficiently represent the objects in question on a computer. The problems of algorithmic number theory are important both for their intrinsic mathematical interest and their application to random number generation, codes for reliable and secure information transmission, computer algebra, and other areas. The first volume focuses on problems for which relatively efficient solutions can be found. The second (forthcoming) volume will take up problems and applications for which efficient algorithms are currently not known. Together, the two volumes cover the current state of the art in algorithmic number theory and will be particularly useful to researchers and students with a special interest in theory of computation, number theory, algebra, and cryptography.
Язык:
Рубрика: Математика /Теория чисел /Вычислительная теория чисел /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1996
Количество страниц: 516
Добавлена в каталог: 21.05.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Nielsen, N. 365
Nievengloski, G.H. 98
Nim-multiplication 349
Niven, I. 318 325
Noll, c. 16 309
Nondctenninistic polynomial time 46
Nondeterministic algorithm 46
Nondeterministic random access machine 60
Nonresidues 178 183 186 241 252 253
Nonresidues in finite fields 200
Nonresidues, bounds for 242 253 372
Nonresidues, bounds for, averaged 253—254
Nonresidues, pseudo-random behavior of 217 253
Nonresidues, quadratic see quadratic nonresidues
Norm 134 136 152 157
Norm in a number field 227
Norm in a number field, computation 243
Norm of an ideal 228
Norm, complexity of 347
Norm, computation of 144
Normal bases 145 148 151
Normal bases of primitive elements 356
Normal bases, constructing 356
Normal bases, density of 350
Normal bases, polynomial factorization and 356
Normal bases, special 350
Normal subgroups 31
NORMAL-POWER algorithm 350
Norman, A.C. 314
Norre, C. 312
Norris, M.J. 120
Norton, G.H. 97 99 149 334
Norton, K.K. 253
Number fields 227
Number fields, degree 227
Number fields, discriminant 227—228 244
Number fields, integral basis 227 244
Number fields, norm 227 228
Number fields, norm, computation 243
Number fields, normal extension of 230
Number fields, presentation of 227
Number fields, trace 227
Number fields, trace, computation 243
Number fields, zeta function see zeta function Dedekind
NUMBER OF DIVESORS TABLE algorithm 298
Number of prime divisors, estimates 237
Number of prime divisors, explicit bounds for 234
Number of prime divisors, normal distribution 248
Number theory, computational complexity and 3—4
Number theory, probabilistic 248
Number-of-divisors function, average order of 26
Number-of-divisors function, estimates 237 263
Number-of-divisors function, explicit bounds for 234
Number-of-divisors function, formula for 35
Odlyzko, A.M. xv 2 13 64 250 261 263 291 300 318 365 385
Odoni, R.W. 255
Oesierte, I. 264
Ofman, Y. 63 65 151 326 345
Ogiwara, M. 317
Oldham, I.B. 196
Olivier, M. 11 369
Olivos, J. 121
Omura, J.K. 351
One-sided error 50 278
Onyszchuk, I.M. 351
Oracle 49
Order of a group element 31
Order, multiplicative 9 101 147
Order, multiplicative, efficient computation of 115
Ordinary leaves 302
Ore, O. 152 153 260 318
Orton, G.A. 14
Orup, H. 122
Oswald, A. 314
Out-degree 58
OwingsJ.C 314
p-adic numbers 175—176 192 199—262
p-th roots in characteristic p 162
p-th roots, mod 192
p.i.d. (principal idea) domain) 33
Pajunen, S. 386
Pall, G. 123
Pan, V. 96
Papadimitriou, M 318
Papert, S. 310
Parady, B.K. 258 312
Parallel computation 9 16 57—59
Parberry, E.A. 314
Parberry, I. 318
PARI 11
Parikh, S.N. 99
Parkin, T.R. 2 13 243 257 375
Partial quotients 75
Partition 49 329
Partition problem 48
Pascal, B. 6
Patashnik, O. 38 39
Paterson, M. 38
Pathology 192
Patterson, C.D. 16
Paxson, G.A. 312
Peano arithmetic 372
Pei, D. 351
Pellet, A.-E. 152 356 362
Penk, M.A. 258 312 334
Penttonen, M. 65
Pepin's test 272 312
Pepin,T. 311 312
Peppard, L.E. 14 351
Peralta, R.C. 253 353
Perfect numbers 5 273
Perfect numbers, even 273 303
Perfect numbers, odd 273
Perfect powers, complexity of determining 59 242
Permutation group, cycles in 359
Permutation group, exponent of 238
Permutations, random polynomials and 359
Perrin, R. 305 382
Pervushin, J.M. 7 15 367
Peterson, I. 16 309
Peterson, W.W. 148
Petr, K. 196 198
Pettorossi, A. 122
Phi function 21
Phi function for polynomials 194
Philippe, J.-L. 318
Phong, B.M. 314
Piarron de Mondesir, E.S. 318
Picutti, E. 308 309
Pieper, H. 123
Pierce expansion 94 95
Pila, J. 200 326
Piltz, A. 251 256 258
Pin, J.-E. 310
Pinch, R.G.E. 199 313—315
Pincin, A. 351
Pintz, J. 311 317 380
Piontas, M. 148
Pippenger, N. 66 121
Piras, F. 346
Pitteway, M.L.V. 97
Plaisted, D.A. 64 317
Planck, M. 241
Plankensteiner, B. 97
Pocklington, H.C. 7 8 15 121 310 353
Pohst,M. xiv 260
Poilin, J.M. 314 381
Poisson distribution 256
Poisson process 256
Poletti, L. 259
Poli, A. 197
Polkinghorn, Jr.J.E. 196
Pollard, J.M. 311
Polvani, G. 256
Polya — Vinogradov inequality 263
Polynomial rings 32 125
Polynomial time 12 45 54
Polynomial time, expected 51
Polynomial-cost RAM 52
Polynomial-time computable function 49
Polynomial-time Turing reductions 50
Polynomials over finite local rings 360
Polynomials, Artin — Schreier 179 193
Polynomials, cyclotomic 147
Polynomials, irreducibility tests for 168 172 198
Polynomials, irreducible 34
Polynomials, mod 192
Polynomials, multiplication of 143
Polynomials, prime-producing 6
Polynomials, primitive, number of 152
Polynomials, sparse representation of 163
Pomerance, C. 10 16 195 251 257 263 276 285 291 295 310 311 313—316 380 381
Popadic, M.S. 263
Porter, J.W. 97
Post, E.L. 12 16 64
Potler, A. 257
Poulet, P. 314
POWER algorithm 102
Power algorithm, iterative implementation 103 114
Power algorithm, recursive implementation 102
Power residues, recognition 351
Powers, D.M. 66
Powers, R.E. 10
Prabhu, K.A. 346
Prachar, K. 246 253 258 368 369
Prasad, T.V.S.R.V. 310
Pratt tree 269
Pratt, V.R. 311
Preste, M.D. 196
Primality testing 45 266
Primality testing of polynomials 168 172 198
Primality testing, Pepin's test 312
Primality testing, randomized algorithms for 12 278—283
Prime factorization 20
Prime fields 125
Prime ideal theorem 228 261
Prime ideal theorem for arithmetic progressions 263
Prime ideal theorem, equivalent forms 261
Prime ideal theorem, holds up to constant factor 261
Prime ideals 33 228
Prime ideals, degree of 228
Prime ideals, density 243
Prime ideals, density of 228 261
Prime ideals, ramified 262
Prime ideals, splitting of 229 230 262
Prime number sieves 295—299
Prime number theorem 20 29 204 236 245—247
Prime number theorem for arithmetic progressions 215 245 251
Prime number theorem for arithmetic progressions, assuming ERH 217
Prime number theorem for arithmetic progressions, equivalent forms 251
Prime number theorem for arithmetic progressions, explicit version 235 263
Prime number theorem for cosets of 215
Prime number theorem for cosets of , assuming ERH 217
Prime number theorem, analytic proof 210—211 239
Prime number theorem, assuming Riemann hypothesis 212
Prime number theorem, assuming Riemann hypothesis, explicit bounds 249
Prime number theorem, elementary proof 206 246
Prime number theorem, explicit versions 233
Prime number theorem, heuristic argument for 236
Prime number theorem, holds up to constant factor 207—208 246
Prime number theorem, intuitive argument for 206—207 238 246
Prime number theorem, probabilistic interpretation 209
Prime number theorem, sharpest known version 209
Prime numbers 20
Prime numbers in an arithmetic progression 348
Prime numbers in arithmetic progressions 245 251
Prime numbers in arithmetic progressions, bounds for 222—223 241 256
Prime numbers in arithmetic progressions, density 235
Prime numbers in arithmetic progressions, finding 224 241
Prime numbers in arithmetic progressions, heuristic arguments 242
Prime numbers in arithmetic progressions, infinitely many 215
Prime numbers in cosets of , bounds for 224
Prime numbers of polynomial form 259
Prime numbers, approximately 247 258
Prime numbers, approximations for 238
Prime numbers, arithmetic progression of 259
Prime numbers, arithmetic progression of, longest known 259
Prime numbers, counts of 247 256
Prime numbers, estimating sums over 28
Prime numbers, gaps between 224—225 242 243 256 257
Prime numbers, infinitely many 20 204—205 236 365
Prime numbers, random 265
Prime numbers, statistical mechanics and 249
Prime numbers, tables or 6 13
Prime numbers, tuples of 226—227
Prime numbers, twin nee twin primes
Prime-producing polynomials 6
Prime-reciprocal constant 233 237 264
PRIMES 45 46
Primes, explicit estimates for functions of 233—236
PRIMETEST algorithm 294
Primitive polynomials 135 352
Primitive polynomials, number of 144 152
Primitive roots 109 116 252
Primitive roots, bounds for 255
Primitive roots, bounds for, assuming ERH 221 241
Primitive roots, bounds for, averaged 255
Primitive roots, bounds for, heuristics 242
Primitive roots, bounds for, mod 255
Primitive roots, search procedures 255
Principal ideal 33
Principal ideal domain 33 143
Pritehard, P. 259 317—318
Probabilistic number theory 248
Probabilistic primality tests 278—283
Prodinger, H. 339
Prom's test 273
Proof, polynomial-length 46
Protasi, M. 122
Proth, K. 267 312
Pseudo-code xiv
Pseudo-polynomial time 329
Pseudo-random number generation 3 115
Pseudoprimes 275—277 305 313 314
Pseudoprimes, 56
Pseudoprimes, composite 313
Pseudoprimes, elliptic curve 314
Pseudoprimes, Euler 277 305 313
Pseudoprimes, even 313
Pseudoprimes, Fermat 275
Pseudoprimes, Lucas 314
Pseudoprimes, ordinary 275
Pseudoprimes, strong 277 281 313
Public-key cryptography 12
Purdy, C.N. 98
Purdy, G.B. 93 98 99 252 334
Putnam, H. 12
Pythagoreans 204 245
QBF 65
Quadratic character 110
Quadratic character, polynomial-time algorithm for 110
Quadratic equations in finite fields 145 189
Quadratic equations over finite fields 157 182
Quadratic nonresidues 109 110 189
Quadratic nonresidues, bounds for 123 253 372
Quadratic nonresidues, bounds for, assuming ERH 218—221 241
Quadratic nonresidues, bounds for, averaged 253—254
Quadratic nonresidues, bounds for, heuristics 217—218 242 245
Quadratic nonresidues, deterministic algorithm for 123 178
Quadratic nonresidues, efficient algorithm for finding 110
Реклама