Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bach E., Shallit J. — Algorithmic Number Theory (том 1)
Bach E., Shallit J. — Algorithmic Number Theory (том 1)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Algorithmic Number Theory (том 1)

Авторы: Bach E., Shallit J.

Аннотация:

"[Algorithmic Number Theory] is an enormous achievement and an extremely valuable reference." — Donald E. Knuth, Emeritus, Stanford University
Algorithmic Number Theory provides a thorough introduction to the design and analysis of algorithms for problems from the theory of numbers. Although not an elementary textbook, it includes over 300 exercises with suggested solutions. Every theorem not proved in the text or left as an exercise has a reference in the notes section that appears at the end of each chapter. The bibliography contains over 1,750 citations to the literature. Finally, it successfully blends computational theory with practice by covering some of the practical aspects of algorithm implementations. The subject of algorithmic number theory represents the marriage of number theory with the theory of computational complexity. It may be briefly defined as finding integer solutions to equations, or proving their non-existence, making efficient use of resources such as time and space. Implicit in this definition is the question of how to efficiently represent the objects in question on a computer. The problems of algorithmic number theory are important both for their intrinsic mathematical interest and their application to random number generation, codes for reliable and secure information transmission, computer algebra, and other areas. The first volume focuses on problems for which relatively efficient solutions can be found. The second (forthcoming) volume will take up problems and applications for which efficient algorithms are currently not known. Together, the two volumes cover the current state of the art in algorithmic number theory and will be particularly useful to researchers and students with a special interest in theory of computation, number theory, algebra, and cryptography.


Язык: en

Рубрика: Математика/Теория чисел/Вычислительная теория чисел/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1996

Количество страниц: 516

Добавлена в каталог: 21.05.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Nielsen, N.      365
Nievengloski, G.H.      98
Nim-multiplication      349
Niven, I.      318 325
Noll, c.      16 309
Nondctenninistic polynomial time      46
Nondeterministic algorithm      46
Nondeterministic random access machine      60
Nonresidues      178 183 186 241 252 253
Nonresidues in finite fields      200
Nonresidues, bounds for      242 253 372
Nonresidues, bounds for, averaged      253—254
Nonresidues, pseudo-random behavior of      217 253
Nonresidues, quadratic      see quadratic nonresidues
Norm      134 136 152 157
Norm in a number field      227
Norm in a number field, computation      243
Norm of an ideal      228
Norm, complexity of      347
Norm, computation of      144
Normal bases      145 148 151
Normal bases of primitive elements      356
Normal bases, constructing      356
Normal bases, density of      350
Normal bases, polynomial factorization and      356
Normal bases, special      350
Normal subgroups      31
NORMAL-POWER algorithm      350
Norman, A.C.      314
Norre, C.      312
Norris, M.J.      120
Norton, G.H.      97 99 149 334
Norton, K.K.      253
Number fields      227
Number fields, degree      227
Number fields, discriminant      227—228 244
Number fields, integral basis      227 244
Number fields, norm      227 228
Number fields, norm, computation      243
Number fields, normal extension of      230
Number fields, presentation of      227
Number fields, trace      227
Number fields, trace, computation      243
Number fields, zeta function      see zeta function Dedekind
NUMBER OF DIVESORS TABLE algorithm      298
Number of prime divisors, estimates      237
Number of prime divisors, explicit bounds for      234
Number of prime divisors, normal distribution      248
Number theory, computational complexity and      3—4
Number theory, probabilistic      248
Number-of-divisors function, average order of      26
Number-of-divisors function, estimates      237 263
Number-of-divisors function, explicit bounds for      234
Number-of-divisors function, formula for      35
Odlyzko, A.M.      xv 2 13 64 250 261 263 291 300 318 365 385
Odoni, R.W.      255
Oesierte, I.      264
Ofman, Y.      63 65 151 326 345
Ogiwara, M.      317
Oldham, I.B.      196
Olivier, M.      11 369
Olivos, J.      121
Omura, J.K.      351
One-sided error      50 278
Onyszchuk, I.M.      351
Oracle      49
Order of a group element      31
Order, multiplicative      9 101 147
Order, multiplicative, efficient computation of      115
Ordinary leaves      302
Ore, O.      152 153 260 318
Orton, G.A.      14
Orup, H.      122
Oswald, A.      314
Out-degree      58
OwingsJ.C      314
p-adic numbers      175—176 192 199—262
p-th roots in characteristic p      162
p-th roots, mod $p^n$      192
p.i.d. (principal idea) domain)      33
Pajunen, S.      386
Pall, G.      123
Pan, V.      96
Papadimitriou, M      318
Papert, S.      310
Parady, B.K.      258 312
Parallel computation      9 16 57—59
Parberry, E.A.      314
Parberry, I.      318
PARI      11
Parikh, S.N.      99
Parkin, T.R.      2 13 243 257 375
Partial quotients      75
Partition      49 329
Partition problem      48
Pascal, B.      6
Patashnik, O.      38 39
Paterson, M.      38
Pathology      192
Patterson, C.D.      16
Paxson, G.A.      312
Peano arithmetic      372
Pei, D.      351
Pellet, A.-E.      152 356 362
Penk, M.A.      258 312 334
Penttonen, M.      65
Pepin's test      272 312
Pepin,T.      311 312
Peppard, L.E.      14 351
Peralta, R.C.      253 353
Perfect numbers      5 273
Perfect numbers, even      273 303
Perfect numbers, odd      273
Perfect powers, complexity of determining      59 242
Permutation group, cycles in      359
Permutation group, exponent of      238
Permutations, random polynomials and      359
Perrin, R.      305 382
Pervushin, J.M.      7 15 367
Peterson, I.      16 309
Peterson, W.W.      148
Petr, K.      196 198
Pettorossi, A.      122
Phi function      21
Phi function for polynomials      194
Philippe, J.-L.      318
Phong, B.M.      314
Piarron de Mondesir, E.S.      318
Picutti, E.      308 309
Pieper, H.      123
Pierce expansion      94 95
Pila, J.      200 326
Piltz, A.      251 256 258
Pin, J.-E.      310
Pinch, R.G.E.      199 313—315
Pincin, A.      351
Pintz, J.      311 317 380
Piontas, M.      148
Pippenger, N.      66 121
Piras, F.      346
Pitteway, M.L.V.      97
Plaisted, D.A.      64 317
Planck, M.      241
Plankensteiner, B.      97
Pocklington, H.C.      7 8 15 121 310 353
Pohst,M.      xiv 260
Poilin, J.M.      314 381
Poisson distribution      256
Poisson process      256
Poletti, L.      259
Poli, A.      197
Polkinghorn, Jr.J.E.      196
Pollard, J.M.      311
Polvani, G.      256
Polya — Vinogradov inequality      263
Polynomial rings      32 125
Polynomial time      12 45 54
Polynomial time, expected      51
Polynomial-cost RAM      52
Polynomial-time computable function      49
Polynomial-time Turing reductions      50
Polynomials over finite local rings      360
Polynomials, Artin — Schreier      179 193
Polynomials, cyclotomic      147
Polynomials, irreducibility tests for      168 172 198
Polynomials, irreducible      34
Polynomials, mod $p^n$      192
Polynomials, multiplication of      143
Polynomials, prime-producing      6
Polynomials, primitive, number of      152
Polynomials, sparse representation of      163
Pomerance, C.      10 16 195 251 257 263 276 285 291 295 310 311 313—316 380 381
Popadic, M.S.      263
Porter, J.W.      97
Post, E.L.      12 16 64
Potler, A.      257
Poulet, P.      314
POWER algorithm      102
Power algorithm, iterative implementation      103 114
Power algorithm, recursive implementation      102
Power residues, recognition      351
Powers, D.M.      66
Powers, R.E.      10
Prabhu, K.A.      346
Prachar, K.      246 253 258 368 369
Prasad, T.V.S.R.V.      310
Pratt tree      269
Pratt, V.R.      311
Preste, M.D.      196
Primality testing      45 266
Primality testing of polynomials      168 172 198
Primality testing, Pepin's test      312
Primality testing, randomized algorithms for      12 278—283
Prime factorization      20
Prime fields      125
Prime ideal theorem      228 261
Prime ideal theorem for arithmetic progressions      263
Prime ideal theorem, equivalent forms      261
Prime ideal theorem, holds up to constant factor      261
Prime ideals      33 228
Prime ideals, degree of      228
Prime ideals, density      243
Prime ideals, density of      228 261
Prime ideals, ramified      262
Prime ideals, splitting of      229 230 262
Prime number sieves      295—299
Prime number theorem      20 29 204 236 245—247
Prime number theorem for arithmetic progressions      215 245 251
Prime number theorem for arithmetic progressions, assuming ERH      217
Prime number theorem for arithmetic progressions, equivalent forms      251
Prime number theorem for arithmetic progressions, explicit version      235 263
Prime number theorem for cosets of $(\mathbb{Z}/(n))^*$      215
Prime number theorem for cosets of $(\mathbb{Z}/(n))^*$, assuming ERH      217
Prime number theorem, analytic proof      210—211 239
Prime number theorem, assuming Riemann hypothesis      212
Prime number theorem, assuming Riemann hypothesis, explicit bounds      249
Prime number theorem, elementary proof      206 246
Prime number theorem, explicit versions      233
Prime number theorem, heuristic argument for      236
Prime number theorem, holds up to constant factor      207—208 246
Prime number theorem, intuitive argument for      206—207 238 246
Prime number theorem, probabilistic interpretation      209
Prime number theorem, sharpest known version      209
Prime numbers      20
Prime numbers in an arithmetic progression      348
Prime numbers in arithmetic progressions      245 251
Prime numbers in arithmetic progressions, bounds for      222—223 241 256
Prime numbers in arithmetic progressions, density      235
Prime numbers in arithmetic progressions, finding      224 241
Prime numbers in arithmetic progressions, heuristic arguments      242
Prime numbers in arithmetic progressions, infinitely many      215
Prime numbers in cosets of $(\mathbb{Z}/(n))^*$, bounds for      224
Prime numbers of polynomial form      259
Prime numbers, approximately      247 258
Prime numbers, approximations for      238
Prime numbers, arithmetic progression of      259
Prime numbers, arithmetic progression of, longest known      259
Prime numbers, counts of      247 256
Prime numbers, estimating sums over      28
Prime numbers, gaps between      224—225 242 243 256 257
Prime numbers, infinitely many      20 204—205 236 365
Prime numbers, random      265
Prime numbers, statistical mechanics and      249
Prime numbers, tables or      6 13
Prime numbers, tuples of      226—227
Prime numbers, twin      nee twin primes
Prime-producing polynomials      6
Prime-reciprocal constant      233 237 264
PRIMES      45 46
Primes, explicit estimates for functions of      233—236
PRIMETEST algorithm      294
Primitive polynomials      135 352
Primitive polynomials, number of      144 152
Primitive roots      109 116 252
Primitive roots, bounds for      255
Primitive roots, bounds for, assuming ERH      221 241
Primitive roots, bounds for, averaged      255
Primitive roots, bounds for, heuristics      242
Primitive roots, bounds for, mod $p^2$      255
Primitive roots, search procedures      255
Principal ideal      33
Principal ideal domain      33 143
Pritehard, P.      259 317—318
Probabilistic number theory      248
Probabilistic primality tests      278—283
Prodinger, H.      339
Prom's test      273
Proof, polynomial-length      46
Protasi, M.      122
Proth, K.      267 312
Pseudo-code      xiv
Pseudo-polynomial time      329
Pseudo-random number generation      3 115
Pseudoprimes      275—277 305 313 314
Pseudoprimes, $\mathcal{P}\mathcal{S}\mathcal{P}\mathcal{A}\mathcal{C}\mathcal{E}$      56
Pseudoprimes, composite      313
Pseudoprimes, elliptic curve      314
Pseudoprimes, Euler      277 305 313
Pseudoprimes, even      313
Pseudoprimes, Fermat      275
Pseudoprimes, Lucas      314
Pseudoprimes, ordinary      275
Pseudoprimes, strong      277 281 313
Public-key cryptography      12
Purdy, C.N.      98
Purdy, G.B.      93 98 99 252 334
Putnam, H.      12
Pythagoreans      204 245
QBF      65
Quadratic character      110
Quadratic character, polynomial-time algorithm for      110
Quadratic equations in finite fields      145 189
Quadratic equations over finite fields      157 182
Quadratic nonresidues      109 110 189
Quadratic nonresidues, bounds for      123 253 372
Quadratic nonresidues, bounds for, assuming ERH      218—221 241
Quadratic nonresidues, bounds for, averaged      253—254
Quadratic nonresidues, bounds for, heuristics      217—218 242 245
Quadratic nonresidues, deterministic algorithm for      123 178
Quadratic nonresidues, efficient algorithm for finding      110
1 2 3 4 5 6 7 8 9
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте