Авторизация
Поиск по указателям
Bach E., Shallit J. — Algorithmic Number Theory (том 1)
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Algorithmic Number Theory (том 1)
Авторы: Bach E., Shallit J.
Аннотация: "[Algorithmic Number Theory] is an enormous achievement and an extremely valuable reference." — Donald E. Knuth, Emeritus, Stanford University
Algorithmic Number Theory provides a thorough introduction to the design and analysis of algorithms for problems from the theory of numbers. Although not an elementary textbook, it includes over 300 exercises with suggested solutions. Every theorem not proved in the text or left as an exercise has a reference in the notes section that appears at the end of each chapter. The bibliography contains over 1,750 citations to the literature. Finally, it successfully blends computational theory with practice by covering some of the practical aspects of algorithm implementations. The subject of algorithmic number theory represents the marriage of number theory with the theory of computational complexity. It may be briefly defined as finding integer solutions to equations, or proving their non-existence, making efficient use of resources such as time and space. Implicit in this definition is the question of how to efficiently represent the objects in question on a computer. The problems of algorithmic number theory are important both for their intrinsic mathematical interest and their application to random number generation, codes for reliable and secure information transmission, computer algebra, and other areas. The first volume focuses on problems for which relatively efficient solutions can be found. The second (forthcoming) volume will take up problems and applications for which efficient algorithms are currently not known. Together, the two volumes cover the current state of the art in algorithmic number theory and will be particularly useful to researchers and students with a special interest in theory of computation, number theory, algebra, and cryptography.
Язык:
Рубрика: Математика /Теория чисел /Вычислительная теория чисел /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1996
Количество страниц: 516
Добавлена в каталог: 21.05.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Chailin, G.J. 315
Chang, T.-H. 195
Characteristic 0 34
Characteristic of a field 34
Characters 141 242
Characters on abclian group 144
Characters, Dinchlet 216
Characters, Dinchlet, primitive 216
Characters, Dinchlet, principal 216
Characters, orthogonality of 144
Characters, quadratic 141 142 146 195 196
Characters, sums over explicit bounds 234
Chartres, B.A 317
Chatland, H. 98
Chebotarev density theorem 231—263
Chebotarev density theorem, assuming GRH 231
Chebotarev density theorem, assuming GRH, explicit version 236
Chebotarev, N.G. 231 263 292
Chebyshev psi function 22
Chebyshev psi function for arithmetic progressions 235
Chebyshev psi function, estimates 246 367
Chebyshev theta function 22 246
Chebyshev theta function for arithmetic progressions 233
Chebyshev's inequality 356
Chebyshev, P.L. 204 208—209 236—238 245 246 261 367 368
Chemac, L. 1
Chen, C.-L. 354
Chen, J-N. 121
Chen, J.M. 196
Cheng, U. 149
Chernick, J. 304 313 380
Chernoff, H. 329
Cherwell, Lord 258 365
Chianilli, D.M. 10 16
Chicn, R.T. 196
Chin, Y.H 121
Chinese remainder theorem 3 101 104—108 118 122 289
Chinese remainder theorem for polynomials 136 152
Chinese remainder theorem in hardware 14
Chinese remainder theorem, algorithm for 105
Chinese remainder theorem, data structures interpretation 105
Chinese remainder theorem, generalized 106 122
Chinese remainder theorem, structure version 105
Chinese remainder theorem, systolic arrays and 122
Chistov, A.L. 197—199 245 379
Chor, В. 96 148 349
Chowla, S. 15 369
Chudnovsky, D.V. 16
Chudnovsky, G.Y 16
Church's thesis 12
Church, A. 12 16
Churchhouse, R.R. 14 248
CIPOLLA algorithm 157 373
Cipolla's algorithm 158 159 162 189
Cipolla, M. 157—158 162 189 194—196 199 314 353 360 367 373
Circuit families 58 65
Circulanls 144
Claasen, H.L. 152
Clark, D.W. 14
Clarke, J.H. 313
Class field theory 262
Class group 1
Class groups 260 262 263
Class groups, generating sets 263
Clause 48
Clausen, T. 309 310
co- 46
Cobham, A. 12 16 64 123 252
Coding scheme 46
Coding theory 148 167
Cody, W.F. 365
Cohen, A.M. 249
Cohen, G.L. 310
Cohen, H. xiv 1 11 13 14 285 316 369 385
Cohen, S.D. 152 199 255
Cohn, H. 15 260 262 376
Cohn, P.M. 96 98
CoIe, F.N. 15
Colbum, Z. 14
Collins, G.E. 10 63 97—99 123 149 152 347 377
Collins. S. 340
Colmar, Thomas de 6
Colquitt, W.N. 16
Comba, P.G. 63
Common divisor 19
Common multiple 19
Commutative law 30
Commutative rings 32
Complete residue system 139
Complex analysis xiii
Complexity classes 45 46
Complexity classes, complement of 46
Complexity classes, parallel 57—59
Complexity classes, randomized 50—52
Complexity theory 41 44
Composite numbers 20
Composite pseudoprimes 313
COMPOSITES 46
Computation 53
Computation in , addition 101
Computation in , inverse 102
Computation in , multiplication 101
Computation in , subtraction 101
Computation in , addition 146
Computation in , inverse 146
Computation in , multiplication 146
Computation in , subtraction 146
Computation in finite fields, addition 132
Computation in finite fields, inverse 132 143
Computation in finite fields, multiplication 132
Computation in finite fields, subtraction 132
Computation in k[X], addition 132
Computation in k[X], division with remainder 132
Computation in k[X], multiplication 132 143
Computation in k[X], subtraction 132
Computational complexity 1
Computational complexity, number theory and 3—4
Computational number theory 2
Computational number theory, history of 4—11
Computer algebra 3
Comrie, L.J. 15
Condie, L. 310 317
Conductors 230 262
Conductors, estimates for 230 244 262—263
Conductors, examples of 230
Configuration 53
Conjectures, Artin 255—256
Conjectures, Bateman — Horn 259
Conjectures, Cramer 225 242 257 258
Conjectures, extended Riemann hypothesis 216
Conjectures, generalized Riemann hypothesis 229
Conjectures, Goldbach 1 259
Conjectures, Hardy and Littlewood 248
Conjectures, li(x) overestimates prime count 248
Conjectures, Mertens 248
Conjectures, pair correlation 250 257
Conjectures, Riemann hypothesis 211
Conjectures, strong prime tuples 226 243 248 258—259
Conjectures, twin prime 226 258
Conjectures, Wagstaff 224 256
Conjugacy classes in groups 31
Conjugate elements in groups 31
Conjugates 34 134 143
Conjunctive normal form 48
Conrey, J.B. 249
Continuants 73 74 77 98
Continuants, efficient computation of 75
Continuants, name of 98
Continued fraction algorithm, nearest-integer variation 79
Continued fractions 75—79 130 131 149 150
Continued fractions for rational functions 130—150
Continued fractions, algorithm for computing 76
Continued fractions, definition of 75
Continued fractions, generalization of 90
Continued fractions, higher-dimensional versions 98
Conway, J.H. 148 349
Cook reductions 64
Cook, B.M. 351
Cook, S.A. 12 16 63—65 96 327 329
Cooper, A.E. 123
Coppersmith, D. 2 13 352
Cormack. G.V 312
Cormen, T.H. xiii 328
Coset, right 30
Cosnard, M. 318
Costa Pereira, N. 263
Coster, M. 121
Cottrell, A. 121
Couffignal, L. 15
Couvreur, C. 310
Cramer's conjecture 242
Cramer, H. 225 241 242 246—249 256—258 375
Crandall, R.E. 2 13 258 312
Crepeau, C. 316
Critical strip 210
Cryptanalysis 149
Cryptography 4 148
cryptography, public-key 12
Cryptology 4
Cube roots in finite fields 182
Cubic equations over finite fields 184—185 193
Cubic nonresidues 183
Cull, P. 122
Cunningham chains 259
Cunningham Project 8
Cunningham tables 10
Cunningham, B.D. 196
Cunningham. A.J.C. 8 15 195 259
Curtze, M. 308
Cyclic groups 30 109 116
Cyclotomic fields 228 261
Cyclotomic fields, degree of 228
Cyclotomic fields, discriminant 228
Cyclotomic fields, discriminant of 261
Cyclotomic fields, integral basis 228
Cyclotomic polynomials 147 180 185
Cyclotomic polynomials, factorization mod p 147
Cyclotomic polynomials, irreducibility 261
Cyclotomic polynomials, polynomial factorization and 201
Cyclotomic polynomials, solution by radicals and 200
CYCLOTOMIC RINGS Test algorithm 290
Cyclotomif rings test 285—293
CZ algorithm 167
d'Ocagne, M. 15
D'ooge, M.L. 14 317
Dai, Z. 149
Damgard, I.B. 253 317
Datta, B. 98 121
Davenport, H. 98 246 251 252 263 319
Davenport, J.H. 314 361 387
Davida. G.I. 148 149 151
Davies, D. 252 261
Davis, J.A. 10 16
Davis, M. 12 16 17 371
Davis, P.J. 122 248
Davy, Sir H, 6
Daykin, D.E. 98
de Heinzelin, J. 245
de la Valtee Poussin, C.-J. 205 215 245 246 251
de Lagny, Т.E. 96
de Leeuw, K. 64
de Melo,W. 121
de Polignac, A. 258
Debnath, L. 14
Decision algorithms 47
Decision problems 44 45
Dedekind, J.W.R. 38 99 152 153 205 228 229 244 260—262 376
Degree of a field extension 33
Degree of a number field 227
Degree of a polynomial 32
Delay-line sieve 9
Deleglise, M. 300 318 365
Demeczky, M. 199
Demytko, N. 317
Deng, X. 96
Denjoy, A. 248
Denncau, M.M. 16
Depth 55
Depth of a boolean circuit 58
Depth of a straight-line program 57
Derivative 169
Deshouillers, J.-M. 2 13
Determinants, circulant 144
DETERMINISTIC SOLOVAY — STRASSEN algorithm 284
Di Porto, A. 314 352
Diab, M. 148
Diaconis, P. 335
Diamond, H.G. 246
Dick, T. xv
Dickson, L.E. 14 15 122 196 258 260 309 310 313 352 382
Dictz. P.F. 385
Dietel, A. 121
Dieudonne, J. 39
Difference Engine 6 15
Different 260
Differentiation, asymptotic 367
Diffie, W. 12
Dijkstra, E.W. 311
Diophantine equations 3 45
Diophantine equations, unsolvahility of 12
Direct product of groups 31
Direct sum of rings 33
Directed graph 57
Dirichlet divisor problem 39
Dirichlet series, convergence region 239
Dirichlet's theorem 152
Dirichlet, P.G.L. 39 93 215 221 245 251 322 332 348 351 372
Discrete logarithms 161 196
Discrete logarithms, baby-step giant-step method 161
Discriminants 260
Discriminants of cyclotomic fields 261
Discriminants of elements 244
Discriminants of number fields 227—228 244 260
Discriminants of number fields, intractability 245
Discriminants of polynomials 119
Discriminants of quadratic fields 245
Discriminants, estimates for 244 260—261
Discriminants, ramified primes and 262
Discriminants, relative 260
Distinct degree algorithm 171 198
Distinct-degree factorization 171 191 198
Distributed computation 16
Division rings 32
Division, fast algorithms for 60
divisors 19
Divisors for polynomials 194
Divisors, number of 26 35—36 319
Divisors, product of 37
Divisors, sum of 22 35 319
Dixon, J.D. 11 97 310 316
dle Moivre, A. 330
Dobkin, D. 121
Doenias, J. 312
Dornsetter, J.L. 149
Downey, P. 121
Drake, S. 14
Dresel, L.A.G. 314
Dress, F. 2 13
Driscoll, J. 99 332 344 356
du Bois-Reymond. P. 39
Реклама