Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bach E., Shallit J. — Algorithmic Number Theory (том 1)
Bach E., Shallit J. — Algorithmic Number Theory (том 1)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Algorithmic Number Theory (том 1)

Авторы: Bach E., Shallit J.

Аннотация:

"[Algorithmic Number Theory] is an enormous achievement and an extremely valuable reference." — Donald E. Knuth, Emeritus, Stanford University
Algorithmic Number Theory provides a thorough introduction to the design and analysis of algorithms for problems from the theory of numbers. Although not an elementary textbook, it includes over 300 exercises with suggested solutions. Every theorem not proved in the text or left as an exercise has a reference in the notes section that appears at the end of each chapter. The bibliography contains over 1,750 citations to the literature. Finally, it successfully blends computational theory with practice by covering some of the practical aspects of algorithm implementations. The subject of algorithmic number theory represents the marriage of number theory with the theory of computational complexity. It may be briefly defined as finding integer solutions to equations, or proving their non-existence, making efficient use of resources such as time and space. Implicit in this definition is the question of how to efficiently represent the objects in question on a computer. The problems of algorithmic number theory are important both for their intrinsic mathematical interest and their application to random number generation, codes for reliable and secure information transmission, computer algebra, and other areas. The first volume focuses on problems for which relatively efficient solutions can be found. The second (forthcoming) volume will take up problems and applications for which efficient algorithms are currently not known. Together, the two volumes cover the current state of the art in algorithmic number theory and will be particularly useful to researchers and students with a special interest in theory of computation, number theory, algebra, and cryptography.


Язык: en

Рубрика: Математика/Теория чисел/Вычислительная теория чисел/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1996

Количество страниц: 516

Добавлена в каталог: 21.05.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Chailin, G.J.      315
Chang, T.-H.      195
Characteristic 0      34
Characteristic of a field      34
Characters      141 242
Characters on abclian group      144
Characters, Dinchlet      216
Characters, Dinchlet, primitive      216
Characters, Dinchlet, principal      216
Characters, orthogonality of      144
Characters, quadratic      141 142 146 195 196
Characters, sums over explicit bounds      234
Chartres, B.A      317
Chatland, H.      98
Chebotarev density theorem      231—263
Chebotarev density theorem, assuming GRH      231
Chebotarev density theorem, assuming GRH, explicit version      236
Chebotarev, N.G.      231 263 292
Chebyshev psi function      22
Chebyshev psi function for arithmetic progressions      235
Chebyshev psi function, estimates      246 367
Chebyshev theta function      22 246
Chebyshev theta function for arithmetic progressions      233
Chebyshev's inequality      356
Chebyshev, P.L.      204 208—209 236—238 245 246 261 367 368
Chemac, L.      1
Chen, C.-L.      354
Chen, J-N.      121
Chen, J.M.      196
Cheng, U.      149
Chernick, J.      304 313 380
Chernoff, H.      329
Cherwell, Lord      258 365
Chianilli, D.M.      10 16
Chicn, R.T.      196
Chin, Y.H      121
Chinese remainder theorem      3 101 104—108 118 122 289
Chinese remainder theorem for polynomials      136 152
Chinese remainder theorem in hardware      14
Chinese remainder theorem, algorithm for      105
Chinese remainder theorem, data structures interpretation      105
Chinese remainder theorem, generalized      106 122
Chinese remainder theorem, structure version      105
Chinese remainder theorem, systolic arrays and      122
Chistov, A.L.      197—199 245 379
Chor, В.      96 148 349
Chowla, S.      15 369
Chudnovsky, D.V.      16
Chudnovsky, G.Y      16
Church's thesis      12
Church, A.      12 16
Churchhouse, R.R.      14 248
CIPOLLA algorithm      157 373
Cipolla's algorithm      158 159 162 189
Cipolla, M.      157—158 162 189 194—196 199 314 353 360 367 373
Circuit families      58 65
Circulanls      144
Claasen, H.L.      152
Clark, D.W.      14
Clarke, J.H.      313
Class field theory      262
Class group      1
Class groups      260 262 263
Class groups, generating sets      263
Clause      48
Clausen, T.      309 310
co-$\mathcal{N}\mathcal{P}$      46
Cobham, A.      12 16 64 123 252
Coding scheme      46
Coding theory      148 167
Cody, W.F.      365
Cohen, A.M.      249
Cohen, G.L.      310
Cohen, H.      xiv 1 11 13 14 285 316 369 385
Cohen, S.D.      152 199 255
Cohn, H.      15 260 262 376
Cohn, P.M.      96 98
CoIe, F.N.      15
Colbum, Z.      14
Collins, G.E.      10 63 97—99 123 149 152 347 377
Collins. S.      340
Colmar, Thomas de      6
Colquitt, W.N.      16
Comba, P.G.      63
Common divisor      19
Common multiple      19
Commutative law      30
Commutative rings      32
Complete residue system      139
Complex analysis      xiii
Complexity classes      45 46
Complexity classes, complement of      46
Complexity classes, parallel      57—59
Complexity classes, randomized      50—52
Complexity theory      41 44
Composite numbers      20
Composite pseudoprimes      313
COMPOSITES      46
Computation      53
Computation in $\mathbb{Z}/(n)$, addition      101
Computation in $\mathbb{Z}/(n)$, inverse      102
Computation in $\mathbb{Z}/(n)$, multiplication      101
Computation in $\mathbb{Z}/(n)$, subtraction      101
Computation in $\mathbb{Z}/(n)[X]/(f)$, addition      146
Computation in $\mathbb{Z}/(n)[X]/(f)$, inverse      146
Computation in $\mathbb{Z}/(n)[X]/(f)$, multiplication      146
Computation in $\mathbb{Z}/(n)[X]/(f)$, subtraction      146
Computation in finite fields, addition      132
Computation in finite fields, inverse      132 143
Computation in finite fields, multiplication      132
Computation in finite fields, subtraction      132
Computation in k[X], addition      132
Computation in k[X], division with remainder      132
Computation in k[X], multiplication      132 143
Computation in k[X], subtraction      132
Computational complexity      1
Computational complexity, number theory and      3—4
Computational number theory      2
Computational number theory, history of      4—11
Computer algebra      3
Comrie, L.J.      15
Condie, L.      310 317
Conductors      230 262
Conductors, estimates for      230 244 262—263
Conductors, examples of      230
Configuration      53
Conjectures, Artin      255—256
Conjectures, Bateman — Horn      259
Conjectures, Cramer      225 242 257 258
Conjectures, extended Riemann hypothesis      216
Conjectures, generalized Riemann hypothesis      229
Conjectures, Goldbach      1 259
Conjectures, Hardy and Littlewood      248
Conjectures, li(x) overestimates prime count      248
Conjectures, Mertens      248
Conjectures, pair correlation      250 257
Conjectures, Riemann hypothesis      211
Conjectures, strong prime tuples      226 243 248 258—259
Conjectures, twin prime      226 258
Conjectures, Wagstaff      224 256
Conjugacy classes in groups      31
Conjugate elements in groups      31
Conjugates      34 134 143
Conjunctive normal form      48
Conrey, J.B.      249
Continuants      73 74 77 98
Continuants, efficient computation of      75
Continuants, name of      98
Continued fraction algorithm, nearest-integer variation      79
Continued fractions      75—79 130 131 149 150
Continued fractions for rational functions      130—150
Continued fractions, algorithm for computing      76
Continued fractions, definition of      75
Continued fractions, generalization of      90
Continued fractions, higher-dimensional versions      98
Conway, J.H.      148 349
Cook reductions      64
Cook, B.M.      351
Cook, S.A.      12 16 63—65 96 327 329
Cooper, A.E.      123
Coppersmith, D.      2 13 352
Cormack. G.V      312
Cormen, T.H.      xiii 328
Coset, right      30
Cosnard, M.      318
Costa Pereira, N.      263
Coster, M.      121
Cottrell, A.      121
Couffignal, L.      15
Couvreur, C.      310
Cramer's conjecture      242
Cramer, H.      225 241 242 246—249 256—258 375
Crandall, R.E.      2 13 258 312
Crepeau, C.      316
Critical strip      210
Cryptanalysis      149
Cryptography      4 148
cryptography, public-key      12
Cryptology      4
Cube roots in finite fields      182
Cubic equations over finite fields      184—185 193
Cubic nonresidues      183
Cull, P.      122
Cunningham chains      259
Cunningham Project      8
Cunningham tables      10
Cunningham, B.D.      196
Cunningham. A.J.C.      8 15 195 259
Curtze, M.      308
Cyclic groups      30 109 116
Cyclotomic fields      228 261
Cyclotomic fields, degree of      228
Cyclotomic fields, discriminant      228
Cyclotomic fields, discriminant of      261
Cyclotomic fields, integral basis      228
Cyclotomic polynomials      147 180 185
Cyclotomic polynomials, factorization mod p      147
Cyclotomic polynomials, irreducibility      261
Cyclotomic polynomials, polynomial factorization and      201
Cyclotomic polynomials, solution by radicals and      200
CYCLOTOMIC RINGS Test algorithm      290
Cyclotomif rings test      285—293
CZ algorithm      167
d'Ocagne, M.      15
D'ooge, M.L.      14 317
Dai, Z.      149
Damgard, I.B.      253 317
Datta, B.      98 121
Davenport, H.      98 246 251 252 263 319
Davenport, J.H.      314 361 387
Davida. G.I.      148 149 151
Davies, D.      252 261
Davis, J.A.      10 16
Davis, M.      12 16 17 371
Davis, P.J.      122 248
Davy, Sir H,      6
Daykin, D.E.      98
de Heinzelin, J.      245
de la Valtee Poussin, C.-J.      205 215 245 246 251
de Lagny, Т.E.      96
de Leeuw, K.      64
de Melo,W.      121
de Polignac, A.      258
Debnath, L.      14
Decision algorithms      47
Decision problems      44 45
Dedekind, J.W.R.      38 99 152 153 205 228 229 244 260—262 376
Degree of a field extension      33
Degree of a number field      227
Degree of a polynomial      32
Delay-line sieve      9
Deleglise, M.      300 318 365
Demeczky, M.      199
Demytko, N.      317
Deng, X.      96
Denjoy, A.      248
Denncau, M.M.      16
Depth      55
Depth of a boolean circuit      58
Depth of a straight-line program      57
Derivative      169
Deshouillers, J.-M.      2 13
Determinants, circulant      144
DETERMINISTIC SOLOVAY — STRASSEN algorithm      284
Di Porto, A.      314 352
Diab, M.      148
Diaconis, P.      335
Diamond, H.G.      246
Dick, T.      xv
Dickson, L.E.      14 15 122 196 258 260 309 310 313 352 382
Dictz. P.F.      385
Dietel, A.      121
Dieudonne, J.      39
Difference Engine      6 15
Different      260
Differentiation, asymptotic      367
Diffie, W.      12
Dijkstra, E.W.      311
Diophantine equations      3 45
Diophantine equations, unsolvahility of      12
Direct product of groups      31
Direct sum of rings      33
Directed graph      57
Dirichlet divisor problem      39
Dirichlet series, convergence region      239
Dirichlet's theorem      152
Dirichlet, P.G.L.      39 93 215 221 245 251 322 332 348 351 372
Discrete logarithms      161 196
Discrete logarithms, baby-step giant-step method      161
Discriminants      260
Discriminants of cyclotomic fields      261
Discriminants of elements      244
Discriminants of number fields      227—228 244 260
Discriminants of number fields, intractability      245
Discriminants of polynomials      119
Discriminants of quadratic fields      245
Discriminants, estimates for      244 260—261
Discriminants, ramified primes and      262
Discriminants, relative      260
Distinct degree algorithm      171 198
Distinct-degree factorization      171 191 198
Distributed computation      16
Division rings      32
Division, fast algorithms for      60
divisors      19
Divisors for polynomials      194
Divisors, number of      26 35—36 319
Divisors, product of      37
Divisors, sum of      22 35 319
Dixon, J.D.      11 97 310 316
dle Moivre, A.      330
Dobkin, D.      121
Doenias, J.      312
Dornsetter, J.L.      149
Downey, P.      121
Drake, S.      14
Dresel, L.A.G.      314
Dress, F.      2 13
Driscoll, J.      99 332 344 356
du Bois-Reymond. P.      39
1 2 3 4 5 6 7 8 9
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте