Авторизация
Поиск по указателям
Bach E., Shallit J. — Algorithmic Number Theory (том 1)
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Algorithmic Number Theory (том 1)
Авторы: Bach E., Shallit J.
Аннотация: "[Algorithmic Number Theory] is an enormous achievement and an extremely valuable reference." — Donald E. Knuth, Emeritus, Stanford University
Algorithmic Number Theory provides a thorough introduction to the design and analysis of algorithms for problems from the theory of numbers. Although not an elementary textbook, it includes over 300 exercises with suggested solutions. Every theorem not proved in the text or left as an exercise has a reference in the notes section that appears at the end of each chapter. The bibliography contains over 1,750 citations to the literature. Finally, it successfully blends computational theory with practice by covering some of the practical aspects of algorithm implementations. The subject of algorithmic number theory represents the marriage of number theory with the theory of computational complexity. It may be briefly defined as finding integer solutions to equations, or proving their non-existence, making efficient use of resources such as time and space. Implicit in this definition is the question of how to efficiently represent the objects in question on a computer. The problems of algorithmic number theory are important both for their intrinsic mathematical interest and their application to random number generation, codes for reliable and secure information transmission, computer algebra, and other areas. The first volume focuses on problems for which relatively efficient solutions can be found. The second (forthcoming) volume will take up problems and applications for which efficient algorithms are currently not known. Together, the two volumes cover the current state of the art in algorithmic number theory and will be particularly useful to researchers and students with a special interest in theory of computation, number theory, algebra, and cryptography.
Язык:
Рубрика: Математика /Теория чисел /Вычислительная теория чисел /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1996
Количество страниц: 516
Добавлена в каталог: 21.05.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Quadratic nonresidues, pseudo-random behavior of 217 253
Quadratic reciprocity 8 111 119 123 141 191 251 352 378
Quadratic reciprocity for polynomials 153
Quadratic residues 109 110 112
Quadratic residues for polynomials 194
Quadratic residues, applications of 123
Quadratic sieve 10
Quartic equations over finite fields 193
Quesada, A.R. 318
Quisquatcr. I.J. 310
Quotient ring 32
Rabin, M.O. 12 17 64 118 119 148 196 198 314 342 355 356 358 372
Rabinovitch, G. 15
Rademacher, H. 368
Radke, C.E. 123
Rados, G. 261
Raghavan, P. 65
Raik, A.E. 15
Ram Murty, M. 256 314
Ramachandran, V. 329
Ramare, O. 263 264
Ramified primes 262
Randell, B. 14
Random access machine (RAM) 3 53 54
Random bits 50
RANDOM PRIME algorithm 293
Random primes, generation of 293—295
Random sieve 249
Randomized algorithms 8 12 50 51 61
Randomized algorithms for primalily testing 12 278—283
Randomness consumption 55 56
Rank 138
Ranum, A. 346
Rao, P.B. 121
Reciprocity laws 136 205 352
Reciprocity laws, quadratic see quadratic reciprocity
Reckhow, R.A. 65 327
Reckow, R. 312
Recursive sets 45
Redei, L. 195
Redinbo, R.G. 148
Reducibility 12
Reduction from factoring lo root finding 177
Reductions 47 49
Reductions, among problems 47—50
Reductions, Cook 64
Reductions, Karp 64
Reductions, many-one 47 49 64
Reductions, Turing 49 50 64
Ree, R. 152
Reed, I.S. 148
Rees, E. 198
Refine algorithm 87
Regimbal, S. 318
Regiomontanus 308
Reichert, M.A. 361
Reid, C. 16
Reiner, I. 352
Relative Galois group 133
Relative hardness 47
Relatively prime 19
Relatively prime in pairs 104
Remmers, H. 196
Renyi, A. 248
RESULT 13
Resultants 136 144 347
Resultants as estimates of discriminants 228
Resultants, complexity of 347
Resultants, computation of 144 244
Resultants, in 377
Retldy, S.M. 340
Reuschle, K.G. 308 309
Ribenboim, P. 13 15 38 246 258 259 310 324
Richards, I. 13 248 310
Richert, H.-E. 246 247 258 380
Rieinann — Siegel formula 250
Riemann hypothesis 211 239 247 248 257
Riemann hypothesis for finite fields 152
Riemann hypothesis for the random sieve 249
Riemann hypothesis of algebraic integers 227
Riemann hypothesis, definition of 31
Riemann hypothesis, direct sum of 33
Riemann hypothesis, division 32
Riemann hypothesis, empirical evidence for 212—213 249—250
Riemann hypothesis, evidence for 249
Riemann hypothesis, fractals and 249
Riemann hypothesis, heuristic argument for 212
Riemann hypothesis, heuristic arguments 248
Riemann hypothesis, isomorphic 32
Riemann hypothesis, polynomial 125
Riemann hypothesis, random walks and 249
Riemann zeta function see zeta function
Riemann — Lebcsgue theorem 211 239 368
Riemann, B. 205 236 240 245 250 251 365 369
Riesel, R. xiv 243 257—259 309 312 316 365 375
Rifa, J. 198 352
Right coset 30
Rings, commutative 32
Rising power 240
Rivat, J. 300 318 365
Rivest, R.L. xiii 13 17 317 328
Robbins, F.H. 14 317
Robin, G. 249 263 368
Robinson, J. 12 371
Robinson, R.M. 9 10 15 16 309 312
Rogers, Jr.H. 327
Rolletschek, H. 98
Ronyai, L. 201
Root, S.C. 259
Roots of unity 141 185
Roots of unity in finite fields 200
Rosen, M.I. 37 148 312 340 342 348 376
Rosier, L.E. 342
Rosser, J.B. 16 39 96 249 252 263 264
Rothstein, M. 196
Rotkiewicz, A. 305 314 381
Rougon, C. 313
Rousseau, G. 123
Roy, R. 369
Royden, H.L. 368
RSA scheme 13 265
Rubinstein, M. 258 375
Rudd, W.G. 10 16
Rudin, W. 38
Rudolph, L. 96
Rumely, R.S. 252 263 264 285 310 316
Rumsey, H. 348 354
Rushworth, C.K 148
Russian peasant multiplication 121
Ruzzo, W.L. 329
Rychlik, K. 361
SAC-2 11
Saks, M.E. 385
Salie, H. 372
Samuel, P. 98
Sanderson, M. 352
Santos, E.S. 64
Sarrus, F. 313
SAT 48
Satisfiability 48
Sato, D. 311
Sauerbrey, J. 121 122
Schaefer, P. 98
Scheidler, R. xv
Schicber, B. 65 96
Schicizel, A. 256 259 376
Schickard, W. 6
Schiilzenberger, M.P. 310
Schmidt, F.K. 152
Schmutz, E. 313
Schneider, D. 1 148
Schoenberg, J.J. 314 381
Schoenfeld, L. 39 249 263 264
Schoenhage, A. 63 64 65 97 121 123 150 250 344
Scholtz, R.A. 149
Scholz, A. 121
Schoof, R.J. 159 195 350
Schorr, C.-P. 98 201
Schreier, O. 348 362
Schrijver, A. 376
Schroeder, M.R. 311 365 375
Schroeppel, R. 11
Schwartz, J.T. 315
Schwarz, S. 195 196 198 356
Schweber, S.S. 376
Scott, D. 64
Scott, P.A. 351
Scratchpad 11
Seah,E. 312
Seed 115
Seelhoff, P. 7 15
Segment algorithm 297
Segmented 297—298 375
Seguin, G.E. 351
Selberg, A. 206 257
Selfridge, J.L. 8 10 11 14 16 307 309—315 380 381 385
Semaev, I.A. 198 356
Semba, I. 121
Semigroups 30 103
Sentence 56
Separable extension 143
Sequence, 2-reguIar 338
Serf, P. 11 16
Seroussi, G. 148 151
Serre, J.-R 152 261
Serret, J.A. 197 319
Sethi, R. 121
Sexton, C.R. 259
Shallit, J.O. 15 97—99 123 200 320 332 334 335 338 343 344 352 353 356 372 379
Shamir, A. 13 17
Shand, M 121
Shank, H. 310
Shanks, D. xv 161 194 195 246 250 252 256 258 259 305 313 314 375 379 381 382
Shannon, A.G 313
Shannon, C.E. 64
Shapiro, H.N. 251
Shapiro, N. 64 241 371
Shawe-Taylor, J. 317
Shayan, Y.R. 348 354
Shea, D.D. 98
Shepherdson, J.C. 145
Shepp, L.A. 359
Shift register 132 149
Shift-register sequence 132
Shiu, P. 318 365
Shiue, J.-S. 344
Shiva, S.G.S. 355
Shlesinger, M.E. 249
Shokrollahi, M.A.. 152
Shorn, J. 122
Shoup, V 151 196—198 200 201 221 255 347 352 353
Shparlinski, I.E. 148 194 196 199—201 356
Shute, G. 346
Sidel'nikov, V.M 356
Siegel zeroes 251
Siegel zeroes, twin primes and 258
Siegel, C.L. 250 251
Sierpidski, W. 256 259 305 312 314 318 376 381
Sieve for computing number of divisors 298—299
Sieve machines 16
Sieve methods 4
Sieve of Eratosthenes 204 236 296—297
Sieve, bicycle-chain 9 16
Sieve, delay-line 9
Sieves 246
Sieves for twin primes 206
Sieves, prime number theorem and 236
Sieves, prime tuples and 258
Sieves, progressions of primes and 259
Sieves, random 249
Silverman, R.D. 10 14 16
Simmons, G.J. 120
Simmons, S.J. 351
Singh, A.N. 98 121
Singleton, R.C. 317
Singmaster, D. 314
Sinisalo, M. 1 13
Sipser, M. 64 310
Sirei, Y. 361
Sispanov, S. 314 365
Size of a Boolean circuit 58
Skavantzos, A. 121
Skopin, A.I. 196
Slisenko, A.O. 196
Sloane, N.J.A. 340
Slot, C. 65
Slowinski, D. 16 309
Smith, C.C. 245
Smith, G.C. 314
Smith, H.J.S. 5 15 194 200 363
Smith, J.W. 10 16
Smith. H.F. 258
Smith. J.F. 258 312
Smooth numbers 22 187—188
Smooth numbers, explicit bounds on density 234
Software packages for number theory 16
Software packages for number theory, Macsyma 11
Software packages for number theory, Maple 11
Software packages for number theory, Mathematica 11
Software packages for number theory, PARI 11
Software packages for number theory, SAC-2 11
Software packages for number theory, Scratchpad 11
Sokolovskii, A.V. 261
Solodovnikov, V.I. 151
Solomon, G. 348 354
Solovav — Strassen algorithm 280
Solovay — Strassen test 279—281 304 314
Solovay — Strassen test, compared to Miller — Rabin 283
Solovay, R. 12 17 279 314
Soloviev, V. xv
Somer, L. 314
Sommerfeld, A. 369
Somos, M. xv
Sompolski, R.W. 13
Sorenson, J. 96 97 99 123 264 317 318 325 326 343 373
Space 55
Space complexity 65
Sparse representation of polynomials 163
Spearman, B. 263
Special leaves 302
Spencer Brown, D.J. 122 338
Spira, R. 38 252
Spottiswoode, W. 347
Square roots in finite fields 155—159 188—189 192 194—195
Square roots of integers 59
Square roots, mod 192
Square roots, mod 199
Squarefree 23 169 191 198
SQUAREFREE algorithm 169
Squarefree decomposition of polynomials 169—170 191
Squarefree part 245
Srinivasan, B.R. 318
Stackel, P. 258
Stark, H.M. 260 378
Stcvin, S. 149
Steams, R.E. 64
Stechkin, S.B. 312
Steiger, W.L. 311 317 380
Stein, J. 82 99
Stein, M. 256 257
Реклама