Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bach E., Shallit J. — Algorithmic Number Theory (том 1)
Bach E., Shallit J. — Algorithmic Number Theory (том 1)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Algorithmic Number Theory (том 1)

Авторы: Bach E., Shallit J.

Аннотация:

"[Algorithmic Number Theory] is an enormous achievement and an extremely valuable reference." — Donald E. Knuth, Emeritus, Stanford University
Algorithmic Number Theory provides a thorough introduction to the design and analysis of algorithms for problems from the theory of numbers. Although not an elementary textbook, it includes over 300 exercises with suggested solutions. Every theorem not proved in the text or left as an exercise has a reference in the notes section that appears at the end of each chapter. The bibliography contains over 1,750 citations to the literature. Finally, it successfully blends computational theory with practice by covering some of the practical aspects of algorithm implementations. The subject of algorithmic number theory represents the marriage of number theory with the theory of computational complexity. It may be briefly defined as finding integer solutions to equations, or proving their non-existence, making efficient use of resources such as time and space. Implicit in this definition is the question of how to efficiently represent the objects in question on a computer. The problems of algorithmic number theory are important both for their intrinsic mathematical interest and their application to random number generation, codes for reliable and secure information transmission, computer algebra, and other areas. The first volume focuses on problems for which relatively efficient solutions can be found. The second (forthcoming) volume will take up problems and applications for which efficient algorithms are currently not known. Together, the two volumes cover the current state of the art in algorithmic number theory and will be particularly useful to researchers and students with a special interest in theory of computation, number theory, algebra, and cryptography.


Язык: en

Рубрика: Математика/Теория чисел/Вычислительная теория чисел/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1996

Количество страниц: 516

Добавлена в каталог: 21.05.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Quadratic nonresidues, pseudo-random behavior of      217 253
Quadratic reciprocity      8 111 119 123 141 191 251 352 378
Quadratic reciprocity for polynomials      153
Quadratic residues      109 110 112
Quadratic residues for polynomials      194
Quadratic residues, applications of      123
Quadratic sieve      10
Quartic equations over finite fields      193
Quesada, A.R.      318
Quisquatcr. I.J.      310
Quotient ring      32
Rabin, M.O.      12 17 64 118 119 148 196 198 314 342 355 356 358 372
Rabinovitch, G.      15
Rademacher, H.      368
Radke, C.E.      123
Rados, G.      261
Raghavan, P.      65
Raik, A.E.      15
Ram Murty, M.      256 314
Ramachandran, V.      329
Ramare, O.      263 264
Ramified primes      262
Randell, B.      14
Random access machine (RAM)      3 53 54
Random bits      50
RANDOM PRIME algorithm      293
Random primes, generation of      293—295
Random sieve      249
Randomized algorithms      8 12 50 51 61
Randomized algorithms for primalily testing      12 278—283
Randomness consumption      55 56
Rank      138
Ranum, A.      346
Rao, P.B.      121
Reciprocity laws      136 205 352
Reciprocity laws, quadratic      see quadratic reciprocity
Reckhow, R.A.      65 327
Reckow, R.      312
Recursive sets      45
Redei, L.      195
Redinbo, R.G.      148
Reducibility      12
Reduction from factoring lo root finding      177
Reductions      47 49
Reductions, among problems      47—50
Reductions, Cook      64
Reductions, Karp      64
Reductions, many-one      47 49 64
Reductions, Turing      49 50 64
Ree, R.      152
Reed, I.S.      148
Rees, E.      198
Refine algorithm      87
Regimbal, S.      318
Regiomontanus      308
Reichert, M.A.      361
Reid, C.      16
Reiner, I.      352
Relative Galois group      133
Relative hardness      47
Relatively prime      19
Relatively prime in pairs      104
Remmers, H.      196
Renyi, A.      248
RESULT      13
Resultants      136 144 347
Resultants as estimates of discriminants      228
Resultants, complexity of      347
Resultants, computation of      144 244
Resultants, in $\mathbb{Z}[X]$      377
Retldy, S.M.      340
Reuschle, K.G.      308 309
Ribenboim, P.      13 15 38 246 258 259 310 324
Richards, I.      13 248 310
Richert, H.-E.      246 247 258 380
Rieinann — Siegel formula      250
Riemann hypothesis      211 239 247 248 257
Riemann hypothesis for finite fields      152
Riemann hypothesis for the random sieve      249
Riemann hypothesis of algebraic integers      227
Riemann hypothesis, definition of      31
Riemann hypothesis, direct sum of      33
Riemann hypothesis, division      32
Riemann hypothesis, empirical evidence for      212—213 249—250
Riemann hypothesis, evidence for      249
Riemann hypothesis, fractals and      249
Riemann hypothesis, heuristic argument for      212
Riemann hypothesis, heuristic arguments      248
Riemann hypothesis, isomorphic      32
Riemann hypothesis, polynomial      125
Riemann hypothesis, random walks and      249
Riemann zeta function      see zeta function
Riemann — Lebcsgue theorem      211 239 368
Riemann, B.      205 236 240 245 250 251 365 369
Riesel, R.      xiv 243 257—259 309 312 316 365 375
Rifa, J.      198 352
Right coset      30
Rings, commutative      32
Rising power      240
Rivat, J.      300 318 365
Rivest, R.L.      xiii 13 17 317 328
Robbins, F.H.      14 317
Robin, G.      249 263 368
Robinson, J.      12 371
Robinson, R.M.      9 10 15 16 309 312
Rogers, Jr.H.      327
Rolletschek, H.      98
Ronyai, L.      201
Root, S.C.      259
Roots of unity      141 185
Roots of unity in finite fields      200
Rosen, M.I.      37 148 312 340 342 348 376
Rosier, L.E.      342
Rosser, J.B.      16 39 96 249 252 263 264
Rothstein, M.      196
Rotkiewicz, A.      305 314 381
Rougon, C.      313
Rousseau, G.      123
Roy, R.      369
Royden, H.L.      368
RSA scheme      13 265
Rubinstein, M.      258 375
Rudd, W.G.      10 16
Rudin, W.      38
Rudolph, L.      96
Rumely, R.S.      252 263 264 285 310 316
Rumsey, H.      348 354
Rushworth, C.K      148
Russian peasant multiplication      121
Ruzzo, W.L.      329
Rychlik, K.      361
SAC-2      11
Saks, M.E.      385
Salie, H.      372
Samuel, P.      98
Sanderson, M.      352
Santos, E.S.      64
Sarrus, F.      313
SAT      48
Satisfiability      48
Sato, D.      311
Sauerbrey, J.      121 122
Schaefer, P.      98
Scheidler, R.      xv
Schicber, B.      65 96
Schicizel, A.      256 259 376
Schickard, W.      6
Schiilzenberger, M.P.      310
Schmidt, F.K.      152
Schmutz, E.      313
Schneider, D.      1 148
Schoenberg, J.J.      314 381
Schoenfeld, L.      39 249 263 264
Schoenhage, A.      63 64 65 97 121 123 150 250 344
Scholtz, R.A.      149
Scholz, A.      121
Schoof, R.J.      159 195 350
Schorr, C.-P.      98 201
Schreier, O.      348 362
Schrijver, A.      376
Schroeder, M.R.      311 365 375
Schroeppel, R.      11
Schwartz, J.T.      315
Schwarz, S.      195 196 198 356
Schweber, S.S.      376
Scott, D.      64
Scott, P.A.      351
Scratchpad      11
Seah,E.      312
Seed      115
Seelhoff, P.      7 15
Segment algorithm      297
Segmented      297—298 375
Seguin, G.E.      351
Selberg, A.      206 257
Selfridge, J.L.      8 10 11 14 16 307 309—315 380 381 385
Semaev, I.A.      198 356
Semba, I.      121
Semigroups      30 103
Sentence      56
Separable extension      143
Sequence, 2-reguIar      338
Serf, P.      11 16
Seroussi, G.      148 151
Serre, J.-R      152 261
Serret, J.A.      197 319
Sethi, R.      121
Sexton, C.R.      259
Shallit, J.O.      15 97—99 123 200 320 332 334 335 338 343 344 352 353 356 372 379
Shamir, A.      13 17
Shand, M      121
Shank, H.      310
Shanks, D.      xv 161 194 195 246 250 252 256 258 259 305 313 314 375 379 381 382
Shannon, A.G      313
Shannon, C.E.      64
Shapiro, H.N.      251
Shapiro, N.      64 241 371
Shawe-Taylor, J.      317
Shayan, Y.R.      348 354
Shea, D.D.      98
Shepherdson, J.C.      145
Shepp, L.A.      359
Shift register      132 149
Shift-register sequence      132
Shiu, P.      318 365
Shiue, J.-S.      344
Shiva, S.G.S.      355
Shlesinger, M.E.      249
Shokrollahi, M.A..      152
Shorn, J.      122
Shoup, V      151 196—198 200 201 221 255 347 352 353
Shparlinski, I.E.      148 194 196 199—201 356
Shute, G.      346
Sidel'nikov, V.M      356
Siegel zeroes      251
Siegel zeroes, twin primes and      258
Siegel, C.L.      250 251
Sierpidski, W.      256 259 305 312 314 318 376 381
Sieve for computing number of divisors      298—299
Sieve machines      16
Sieve methods      4
Sieve of Eratosthenes      204 236 296—297
Sieve, bicycle-chain      9 16
Sieve, delay-line      9
Sieves      246
Sieves for twin primes      206
Sieves, prime number theorem and      236
Sieves, prime tuples and      258
Sieves, progressions of primes and      259
Sieves, random      249
Silverman, R.D.      10 14 16
Simmons, G.J.      120
Simmons, S.J.      351
Singh, A.N.      98 121
Singleton, R.C.      317
Singmaster, D.      314
Sinisalo, M.      1 13
Sipser, M.      64 310
Sirei, Y.      361
Sispanov, S.      314 365
Size of a Boolean circuit      58
Skavantzos, A.      121
Skopin, A.I.      196
Slisenko, A.O.      196
Sloane, N.J.A.      340
Slot, C.      65
Slowinski, D.      16 309
Smith, C.C.      245
Smith, G.C.      314
Smith, H.J.S.      5 15 194 200 363
Smith, J.W.      10 16
Smith. H.F.      258
Smith. J.F.      258 312
Smooth numbers      22 187—188
Smooth numbers, explicit bounds on density      234
Software packages for number theory      16
Software packages for number theory, Macsyma      11
Software packages for number theory, Maple      11
Software packages for number theory, Mathematica      11
Software packages for number theory, PARI      11
Software packages for number theory, SAC-2      11
Software packages for number theory, Scratchpad      11
Sokolovskii, A.V.      261
Solodovnikov, V.I.      151
Solomon, G.      348 354
Solovav — Strassen algorithm      280
Solovay — Strassen test      279—281 304 314
Solovay — Strassen test, compared to Miller — Rabin      283
Solovay, R.      12 17 279 314
Soloviev, V.      xv
Somer, L.      314
Sommerfeld, A.      369
Somos, M.      xv
Sompolski, R.W.      13
Sorenson, J.      96 97 99 123 264 317 318 325 326 343 373
Space      55
Space complexity      65
Sparse representation of polynomials      163
Spearman, B.      263
Special leaves      302
Spencer Brown, D.J.      122 338
Spira, R.      38 252
Spottiswoode, W.      347
Square roots in finite fields      155—159 188—189 192 194—195
Square roots of integers      59
Square roots, mod $2^n$      192
Square roots, mod $p^n$      199
Squarefree      23 169 191 198
SQUAREFREE algorithm      169
Squarefree decomposition of polynomials      169—170 191
Squarefree part      245
Srinivasan, B.R.      318
Stackel, P.      258
Stark, H.M.      260 378
Stcvin, S.      149
Steams, R.E.      64
Stechkin, S.B.      312
Steiger, W.L.      311 317 380
Stein, J.      82 99
Stein, M.      256 257
1 2 3 4 5 6 7 8 9
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте