Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bach E., Shallit J. — Algorithmic Number Theory (том 1)
Bach E., Shallit J. — Algorithmic Number Theory (том 1)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Algorithmic Number Theory (том 1)

Авторы: Bach E., Shallit J.

Аннотация:

"[Algorithmic Number Theory] is an enormous achievement and an extremely valuable reference." — Donald E. Knuth, Emeritus, Stanford University
Algorithmic Number Theory provides a thorough introduction to the design and analysis of algorithms for problems from the theory of numbers. Although not an elementary textbook, it includes over 300 exercises with suggested solutions. Every theorem not proved in the text or left as an exercise has a reference in the notes section that appears at the end of each chapter. The bibliography contains over 1,750 citations to the literature. Finally, it successfully blends computational theory with practice by covering some of the practical aspects of algorithm implementations. The subject of algorithmic number theory represents the marriage of number theory with the theory of computational complexity. It may be briefly defined as finding integer solutions to equations, or proving their non-existence, making efficient use of resources such as time and space. Implicit in this definition is the question of how to efficiently represent the objects in question on a computer. The problems of algorithmic number theory are important both for their intrinsic mathematical interest and their application to random number generation, codes for reliable and secure information transmission, computer algebra, and other areas. The first volume focuses on problems for which relatively efficient solutions can be found. The second (forthcoming) volume will take up problems and applications for which efficient algorithms are currently not known. Together, the two volumes cover the current state of the art in algorithmic number theory and will be particularly useful to researchers and students with a special interest in theory of computation, number theory, algebra, and cryptography.


Язык: en

Рубрика: Математика/Теория чисел/Вычислительная теория чисел/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1996

Количество страниц: 516

Добавлена в каталог: 21.05.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Stein, P.      249
Steinitz, E.      260
Stemmler, R.M.      259
Step, notion of      41
Stepanov, S.A.      356
Stephens, A.J.      15
Stickelberger, L.      152 356
Stieltjes integral      25 29 38 208
Stieltjes, T.J.      99 240 249 369
Stinson, D.R.      351
Stirling numbers      95
Stirling's approximation      207 261 322
Stockmeyer, L.J.      64 65 122
Straight-line programs      57 65
Strang, G.      195
Strassen, V.      12 17 63 65 149 279 311 314
Straus, E.G.      121 253
Strong liars      281 282
Strong prime tuples conjecture      226 243 258—259
Strong prime tuples conjecture, Artin's conjecture and      256
Strong prime tuples conjecture, Mersenne numbers and      376
Strong pseudoprimes      277 281 313
Strong witness      281
Strong, R.      352
Strothers, W.W.      255
Sturtivant, C.      148
Subbarao, M.V      121
Subgroups      30
Subgroups, normal      31
SUBSET PRODUCT      63
SUBSET SUM      63 329
Sugunama, M      121
Sum-of-divisors function      22
Sum-of-divisors function on Gaussian integers      38
Sum-of-divisors function, estimates      238
Sum-of-divisors function, explicit bounds for      234
Sum-of-divisors function, formula for      35
Sun Tsu      122
Sun, X.      122
Supercomputers      16
Suryanarayana, D.      247
Sutherland, I.E.      65
Sutton, C.S.      258 366
Svaiter, B, R      121
Svoboda, A.      14
SWAC      10
Swan, R.G.      260 343 356
Sweeney, D.W.      39
Sweeny, L.      264
Swift, J.D.      313
Swinnciton-Dyer, H.P.R      1 13 14
Sylvester, J.J.      149 332 347 365 366
Szabo, N.S.      14
Szekeres, G.      15
Szele, T.      352
Szemeredi, E.      311 317 380
Szep, J.      352
Szymiczek, K.      314
Takagi, N.      121
Takagi, T.      230 262
Takamatsu, Y.      148
Talamo, M.      122
Tamarkine, J.      195
Tanaka, M      13
Tanaka, R.I.      14
Tanner, J.W.      13
Tarjan, R.E.      38
Tarry, G.      13
Taton, R.      15
Tauberian theorems      246
Taussky, O.      14
Tavares, S.E      14 351
Taylor, D.      148
Taylor, R.      13
te Riele, H.J.J.      2 13 213 249 263 264
Templet, M.      312
Tensor products      145 349
Terras, A.      252
Terras, R.      252
Terrill, H.M.      264
Test, primality      278
Thatcher, Jr.H.C.      365
Theorem      13
Theory      13
Theory of computation, history of      11—13
Thiong Ly, J.A.      352 355
Thomas, J.J.      148
Thomson, W.      see Kelvin. Lord
Thoro, D.      97
Thurber, E.G.      121
Thurston, H.S.      360
Thyssen, A.      259
Tichy, R.P.      339
Tiller, R.      10 16
Titchmarsh, E.C      217 246 249 252 263 368
Tiwari, P.      65 96
Todd, J.      369
Tompa, M.      151 342
TONELLI algorithm      156
Tonelli's algorithm      156 158 188 217
Tonelli, A.      156 158 188 194 199 217
Tonkov, T      97
Toumier, E.      361
Toyama, H.      260
Trace      134 136 152
Trace as a linear map      134
Trace in a number field      227
Trace in a number field, computation      243
Trace, complexity of      348
Trace, computation of      144 348
Trevisan, V.      197 312
Trial division      265
Trial division for polynomials      196
Truong, T.K.      148
Tsai, Y.H.      121
Tsangaris, P.G.      318
Tsfasman, M.A.      148
Tsujii, S.      153 351
Tu, K.C.      196
Tuckerman, B.      8 16 309
Tunnell, J.      343
Turck, S.A.V.      15
Turin, P.      248 372
Turing machine      12
Turing reductions      49 50 64 353
Turing reductions, polynomial time      50
Turing's thesis      12
Turing, A.M.      10 12 16 64 249
Twin primes      206 225—226 258
Twin primes, largest      258
Twin primes, searching for      258
Two-sided error      51
Ulam, S.      65 249 256—257 376
Ullman, J.D.      xiii 61 150 152 326 345
Undecidable      12
Unique factorization      20 35 38
Unique factorization domains      32 125
UNIT      20
Unit cost model      42
UNITS      32 101
Units group      33 139
Units in number fields      260
Uppuluri, V.R.R.      315
Urbanek, P.J.      122
Uspensky, I.V.      99
Utz, W.R.      121
Vaculen Eynden, C.      318 382
Vaeca, G.      38 379
Vahlen, K.Th.      80 82 99
Vaidyanathaswamy, R.      153
van de Lune, I.      213 249 263 264
van der Hulst, M.-P.      314 316
Van der Pol, B.      369
Van der Poorten, A.J.      314
Van der Waerden, B.L.      39 148 344 346 363 364
van Emde Boas, P.      65
van Leeuwen, J.      65 121
van Lint, J.H.      120 343
van Oorschot, P.C      196 197 201
van Schooten, R      310
van Tilborg. H.C.A.      352
van Trigt, C      98
Vandeth, D.S.      xv
Vandiver, H.S.      13 14 195 260
Vansione, S.A.      196 197 201 351
Vaughan, R.C      263
Vegh.E.      121
Velu, J.      253 315
Vertices      57
Vetter, E.      64 97 121
Vinogradov, A.I.      247
Vinogradov, J.M.      218 255 263
Viry, G.      197
Vitanyi, P.      38 65
Vladut, S.G.      148
Volger, H.      121
Volpi, A.      361
von Grosschmid, L.      97
von Koch, H.      212
von Mangoldt lambda function      22 210
von Mangoldt, R      210 251
von Neumann, J.      65 310
von zur Gathen, J      99 121 122 148 149 151 197 200 201 347 350 351 356 359 361
Vuillemin, J.      121
Wada, H.      311
Wagon, S.      xv 310 315
Wagstad, Jr.S.S.      8—10 13 14 16 224 253 256 305 311 313—315 373 375 381 382
Wagstaff's conjecture      224 256
Wahlin, G.E.      260
Walfisz, A.      246 251
Wallace, C.S.      66
Waller, C.D.      120 121
Wan, D.      197
Wang, C.C.      351
Wang, M.      351
Wang, P.      99 197
Wang, Y.      253 255 256 259
War, mathematics and      4
Ward, M.      312
Ward, R.L.      16
Waring's theorem      13
Waring, E.      2 259
Warlimont, R.      171 197 198 247
Washington, L.C.      261
Waterman, M.S.      96
Watrous, J.      342
Weber, K.      64 99
Wedderbum's theorem      33
Wedderbum, J.H.      see MacLagan-Wedderbum J.H.
Weil, A.      14 98 152
Weinberger, M.J.      350
Weinberger, P.J.      11 252
Weinstock, R.      96
Weintraub, S.      257 259
Weiss, A.      263
Welch, L.R.      149 197
Weldon, Jr.E.J.      148
Welsh, D.J.A.      65
Welsh, Jr.L.      16
Wertheim, G.      309
Western, A.E.      255 257 259 312
Whaples, G.      118 342
Wheeler. D.J.      309
White, D.J.      314
Whitehead, J.      342
Whiteman,A.      152
Whittington, C.      xv
Wiens, D.      311
Wigert, S.      366
Wiles. A.      13
Wilf, H.S.      248 318
Wilkins, Jr.J.E.      381
Willans, C.P.      318
Willett, M.      148
Williams, F.C.      16
Williams, H.C.      xvi 14—16 123 194 195 252 310—314 343
Williams, I.S.      320
Williams, K.S.      195 251 263
Willoner. R.      121
Wilson's theorem      303 379
Wilson's theorem, converse of      304
Wilson, D.B.      121
Wilson, L.G.      382
Wilson, R.M.      351
Wilson, T.C.      122
Wilton, J.R.      369
Winkler. E      63
Winograd, S.      352
Winter, D.T.      213 249 263 264
Wintner, A.      247 248
Wirth, N.      317
Witness, Euler      280
Witness, false      314
Witness, strong      281
Wood, T.C.      317
Woodall, H.J.      8 15
Woods, D.      313
Wormell, C.P.      318
Wrench, Jr.J.W.      256
Wright, t. M.      37 38 98 258 263 310 318 332 365 366 368 375
Wunderlich, M.C.      10 11 16 249 311 318
Wyman, B.F.      262 352
Yacobi, Y.      121
Yainada, H.      64
Yajinia, S.      121
Yang, K.W.      98
Yao, A.C.-C.      97 121 328 339 385
Yao, F.F.      339
Yen, C.S.      148
Yen, R.T.      310
Yohe, J.M.      249
Yorinaga, M.      313
Young, J.      257 312
Younis, S.C.      16
Yu, K.J.      256
Yun algorithm      356
Yun's algorithm      170 356—358
Yun, D.Y.Y.      99 170 356
Zagier, D.      246
Zaman, A.      3 14
Zarantonello, S.E.      258 312
Zaring, W.M.      99
Zarnke, C.R      312
Zassenhaus, H., xiv      167 1% 197 200 260 355 359—361
Zavrotsky, A.      96
Zeng, K.      149
Zero-divisors      32
Zeta function      23 204
Zeta function, analytic properties of      235 210—235 249
Zeta function, blackbody radiation and      241
Zeta function, Dedekind      228 261
Zeta function, Dedekind of cyclotomie field      229
Zeta function, Dedekind, analytic properties of      228—229
Zeta function, Dedekind, Artin's conjecture and      255
Zeta function, Dedekind, zeroes of      261
Zeta function, evaluation of      240 250
Zeta function, Fourier transform      240
Zeta function, functional equation      240
Zeta function, Hermitian matrices and      250
Zeta function, integral for      241
1 2 3 4 5 6 7 8 9
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте