Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bach E., Shallit J. — Algorithmic Number Theory (том 1)
Bach E., Shallit J. — Algorithmic Number Theory (том 1)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Algorithmic Number Theory (том 1)

Авторы: Bach E., Shallit J.

Аннотация:

"[Algorithmic Number Theory] is an enormous achievement and an extremely valuable reference." — Donald E. Knuth, Emeritus, Stanford University
Algorithmic Number Theory provides a thorough introduction to the design and analysis of algorithms for problems from the theory of numbers. Although not an elementary textbook, it includes over 300 exercises with suggested solutions. Every theorem not proved in the text or left as an exercise has a reference in the notes section that appears at the end of each chapter. The bibliography contains over 1,750 citations to the literature. Finally, it successfully blends computational theory with practice by covering some of the practical aspects of algorithm implementations. The subject of algorithmic number theory represents the marriage of number theory with the theory of computational complexity. It may be briefly defined as finding integer solutions to equations, or proving their non-existence, making efficient use of resources such as time and space. Implicit in this definition is the question of how to efficiently represent the objects in question on a computer. The problems of algorithmic number theory are important both for their intrinsic mathematical interest and their application to random number generation, codes for reliable and secure information transmission, computer algebra, and other areas. The first volume focuses on problems for which relatively efficient solutions can be found. The second (forthcoming) volume will take up problems and applications for which efficient algorithms are currently not known. Together, the two volumes cover the current state of the art in algorithmic number theory and will be particularly useful to researchers and students with a special interest in theory of computation, number theory, algebra, and cryptography.


Язык: en

Рубрика: Математика/Теория чисел/Вычислительная теория чисел/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1996

Количество страниц: 516

Добавлена в каталог: 21.05.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Greatest common divisor, binary algorithm, for polynomials      149
Greatest common divisor, computation of      20 67—99
Greatest common divisor, definition of      19
Greatest common divisor, Euclidean algorithm for      4 41 67—70
Greatest common divisor, Euclidean algorithm for, bit complexity of      68 70
Greatest common divisor, Euclidean algorithm for, worst-case analysis      69
Greatest common divisor, formula for      34
Greatest common divisor, lower bound for      96
Greatest common divisor, more than two inputs      96
Greatest common divisor, parallel computation of      3 96
Greatest common divisor, practical considerations      99
Greatest common divisor, relationship to lem      34
Greatest integer function      19
Greene, D.H.      358
Gregory, R.T.      199
Greibach, S.A.      64
GRH      see generalized Riemann hypothesis
Gries, D.      122 317
Grigoriev, D.Yu.      64 196 197
Grimson, W.E.L.      263
Grossman, H.      97
Grosswald, E.      255 259
Grotefeld, A.F.W.      64 97 121
Group of units      33
Groups, Abelian      30 116 138
Groups, abelian, fundamental theorem of      138 152
Groups, conjugate elements in      31
Groups, cyclic      30 109 116 137 147
Groups, definition      30
Groups, direct product of      31
Groups, exponent of      31 275
Groups, finite      30
Groups, isomorphic      31
Groups, permutation      238
Gruenberger, F.J.      310
Guerrier, W.J.      352
Guida. R      352
Guillaume, D.      313
Gunji, H.      196
Gupta, R.      256
Gurak, S.      314
Gurari, E.M.      64
Guthmann, A.      312
Guy, R.K.      259 310 311
Habsieger, L.      121
Hadamard, J.      205 245
Haddad, R.      118
Haghighi, M.      315
Hagis, Jr.P.      259
Hahn, S.G.      253
Haihenberger, D.      350
Haken, W.      2
Hales, A.      197
Halherstam, H.      246 258
Hall, Jr.M.      13
Halting problem      12
Hanmams, J.      64 310
Hanson, D.      263
Harari, S.      316
Hardman, N.R.      351
Hardy, G.H.      4 14 37—39 98 246 248 258 259 263 310 332 366 368 375
Hardy, K.      195
Harkin, D.      15
Harman, G.      225
Harmonic numbers      26 242 365
Harris, V.C.      97—99 318
Hasan, M.A.      148 351
Haselgrove, C.B.      252
Hasse, H.      152 262
Hastad, J      98
Havas, G.      96
Hawkins, D.      249
Haworth, G.      309 312
Hayes, D.R.      152
Head, A.K.      120
Heaslet, M.A.      99
Heath, L.S.      64
Heath, T.L.      96 245 310
Heath-Brown, D.R.      222 223 256—258
Hecke. E.      205
Hehner, E.C.R.      199
Heilbronn, H.      97
Heilman, M.      12
Hejhal, D.A.      249 250 252
Hellegouarch, Y.      152 198
HENSEL — SPLIT algorithm      174
HENSEL — ZERO algorithm      174—176 192
Hensel's lemma      173—176 199
Hensel. K.      199 260 350 356 362
Hensley, D.      97 24«
Herlestam, Т.      315
Hersh, R.      122
Herstein, I.N.      xiii 39 148
Heyde, C.C.      249
Heyworth, M.R.      14
Higgins, J.      311
Higher reciprocity      146 205 352
Hikila,T.      318
Hilbert's "Theorem 90"      134 146 152
Hilbert's tenth problem      11 12 45
Hilbert, D.      11 16 134 152 260
Hildehrand, A.      256
Hill, J.R.      313
Hillstrom. K.E.      365
Hindenhurg, C.F.      5 6 14 15
Hinz, J.      251 263
Hirano, K.      120
Ho, C.-W.      344
Hodges, A.      16
Hoffman de Visme, G.      365
Hoffmann, H.      312
Hoggatt, Jr.V.E.      314 381
Hoheisel, G.      225 257
Hoidridge, D.B.      10 16
Hollinger, C.      11 16
Holloway, J.L.      122
Holte, R.      311
Homomorphism      31 32
Homomorphism, preserving randomness      190
Hooley, C.      222 246 255
Hoover, H.J.      65
Hopcroft, J.E.      xiii 61 149—152 326 345
Horn, R.A.      259 375
Horspool, R.N.S.      199
Howell, R.R.      342
Hsia, P.      310
Hsieh. S.-K.      256
Hua, L.K.      37 123
Huang, M.-D.A.      13 194 200 266 294 316
Huber, K.      196
Hudeloi, I.      7
Hudson, R.H.      297 317 318
Hueisbergen, L.      253 255 373 379
Huenemann, J.      313
Hulchinson, J.L.      249
Hunt, J.N.      314
Hurwitz, A.      98 309 312
Huxley, M.N.      246
Ibarra, O.H.      64
Ideals      32
Ideals, maximal      32
Ideals, norms of      228
Ideals, prime      33
Ideals, principal      33
Identity element      30
Ie Vavasseur, R.      149
Imai, H.      121
Imchenetzki, V.C.      15
In-degree      58
Inclusion-Exclusion Principle      306 319
Increment      11S
Index of one group in another      31
Ingham, A.E.      246 250 365—368
Inkeri, K.      312
Instantaneous description      53
Integer functions      82 92
Integral basis      260
Integral basis of a number field      227 244
Integral basis of a quadratic field      245
Integral basis, finite      143
Integral domains      32
Inverses      30
Ireland, K.      37 148 340 342 348 376
Irreducible element      32
Irreducible polynomials      34
Irreducible polynomials, absolutely      136
Irreducible polynomials, bivariate      346
Irreducible polynomials, density of      135 158
Irreducible polynomials, heuristics      200
Irreducible polynomials, number of      134
Isbango bone      204 245
Isemonger, K.R.      8
Isenkrahe, C      318
Isomorphism      31 32
Isomorphism between finite fields      172—173 192 199
Israilov, M.I.      369
Ito, H.      314
Itoh, T.      153 195 351
Iverson, K.E.      37
Ivic, A.      39 246 257
Iwamura, K.      121
Iwaniec, H.      258
Jabotinsky, E.      249
JACOBI algorithm      113
Jacobi sums      285 316
Jacobi symbol      101 111—114 119 123
Jacobi symbol for polynomials      141—143 146
Jacobi symbol, efficient computation of      113
Jacobi, C.G.J.      111 123 363
Jacobson, N.      39
Jacobsthal's function      258
Jacobsthal, E.      258
Jaeger, P.      310
Jaeschke, G.      308 313—315
James III, R.E.      318
Jammalamadaka, S.R.      315
Jayadeva      4
Jeans, J.H.      313
Jebelean, Т.      97 99
Jevons, W.S.      5 15
Joensson, I.      312
Johnson, B.A      122
Johnson, D.S.      xiii 64 65
Johnson, S.M.      257 374
Jones, J.      317
Jones, J.P.      17 311 314 318
Jones, M.R      257 258
Jones, N.D.      66
Jordan, J.H.      351
Judd, J.S.      31
Julia, B.      249
Jungnickel, D.      352
Jurkat, W.B.      247 380
Just, B.      98
k-ary methods      121
Kac, M.      248
Kalecki, M.      39
Kaltofen.E.      98 99 197
Kaminski, M.      152
Kanevsky, A.      xv
Kangsheng, S.      122
Kannan, R.      96 122
Kannan, S.      98
Kaplansky      1. 312
Karatsuba, A.A.      63 151 246 326 345
Karloff, H.J.      xvi 329
Karp reductions      64
Karp, R.M.      12 16 64 65 329 342
Karpinski, L.C.      14 317
Karpinski, M.      64
Karst, E.      259
Katajainen, J.      65
Kawai, S.      318
Kawamura, S.-L.      120
Keller, J.B.      14
Keller, J.M.      148
Keller. W.      310 313
Kelvin, Lord      65
Kempfert, H.      201
Kernel of a homomorphism      31
Kesava Menon, P.      319
Khurgin, L.      xv
Kilian, H.      97
Kim, S.H.      295 314 316
Kiss, P.      314
Kleene, S.C      16
Knapsack      63 329
Knoedel, W      313
Knopfmacher, A.      97 149 171 197 198
Knopfmacher, J.      149 198
Knuth, D.E.      xiv xv 14 38 39 63 95 97 99 121 312 322 328 332—335 358
Koblitz, N.      xiv 199 311
Koc, C.K.      121 122
Kofler, J.      376
Kolden, K.      98
Kolesnik, G.      253
Kompella, K.      96 122
Konyagin, S.      263 311
Kornblum, H.      152 353
Kornerup, P.      121 122
Korsell, A.      313
Kosambi, D.D.      256
Kowol, G.      314
Kraitchik, M.      8 265 267 310
Kramer, E.E.      200
Kranakis, E.      xiv 315
Kravitz, S.      375
Krilikos, N.      98
Krishnamurthy, E.V.      199
Kronecker — Vahlen theorem      80 82
Kronecker's symbol      123
Kronecker. L.      80 82 99 261 365
Krueger, J.G.      310
Ku, Y.H.      122
Kuch, G.D.      xv
Kuechlin, W.      64
Kuehne, H.      152 153 351
Kugelmass. J.      325
Kuipers, L.      318
Kukihara, K.      120
Kung, H.T.      99 149
Kurtz, G.C.      314
Kurtz, S.      xvi
L-functions for number fields      261
L-functions, Dirichlet      216
L-functions, Dirichlet primes in progressions and      205 251
L-functions, Dirichlet zero-free region      264
L-functions, Dirichlet, analytic properties of      216 253 263
L-functions, elliptic curves and      1
Laaser, W.T.      66
Lacampagne, C.B.      311
Ladner, R.E.      329
Lagarias, J.C      98 261 263 300 318 365 385
Lagrange's theorem      30
Lagrange, J.L.      121—122 194 199
Lai, M.      257—259
Lambek, J.      317
Lambert, J.H.      6 15
Lambert, R.      xv
Lame, G.      69 96 97
1 2 3 4 5 6 7 8 9
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте