Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Methods of Modern mathematical physics (vol. 4) Analysis of operators

Авторы: Reed M., Simon B.

Аннотация:

The book covers the theory about eigenvalues of Schrodinger operators. It is complete success in explaining clearly the basic concepts involved: perturbation theory (summability questions, fermi golden rule), min-max principle for discrete spectrum, Weyl theorem, HVZ theorem, the absence of singular continuous spectrum, ground state questions, periodic operators, semiclassic distribution of eigenvalues, compactness criteria.


Язык: en

Рубрика: Математика/Математическая Физика/Учебники/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1978

Количество страниц: 396

Добавлена в каталог: 24.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$C^{\infty}$-vector      $201^2$
$L^p$ inequalities      32
Absolute value of an operator      $196^1$
Absolutely continuous subspace      $230^1$
Accretive operator      $240^2$
Adjoint, Banach space      $185^1$
Adjoint, Hilbert space      $186^1$
Adjoint, unbounded operator      $252^1$
Agmon potential      169
Agmon — Kato — Kuroda theorem      169
Algebraic multiplicity      9
Analytic family of type (b)      20
Analytic family, in the sense of Kato      14
Analytic family, type (A)      16
Analytic family, type (B)      20
Analytic Fredholm theorem      $201^1$
Analytic function, vector-valued      $189—190^1$
Analytic vector      $201^2$
Anharmonic oscillator      $175^2$ 20 32 41 64 84
Antilinear operator      $69^1$
Approximate identity      $251^1$
Approximate point spectrum      178
Aronszajn — Donoghue theory      140
Ascoli’s Theorem      $30^1$
Associated string      129
Asymptotic series      26
Asymptotic series, order k strong      43
Asymptotic series, strong      40
Atomic model      304
Auger states      52
Autoionizing states      52
Axiomatic quantum field theory      $62^2$
B.L.T. theorem      $9^1$
Baire measure      $105^1$
Balslev — Simon theorem      237
Banach space      $67^1$
Barely connected      125
Bargmann’s bound      94 366
Basic period cell      303
Basis of a lattice      310
Bessel’s inequality      $38^1$
Beurling — Deny criteria      209
Birman — Schwinger bound      98
Bochner integral      $119^1$
Bochner — Schwartz theorem      $14^2$
Borel set      $14^1$
Borel summability method      44
Borel transform      44
Borel — Caratheodory theorem      328
Boson Fock space      $53^1$
Bound state energies      79
Bound states      79
Bounded holomorphic semigroup      $248^2$
Bounded operator      $8^1$
Breit — Wigner resonance shape      53
Brillouin zone      311
Calogero’s bound      94 366
Canonical commutation relations      $274^1$
Canonical form for compact operators      $203^1$
Carleman’s theorem      39
Carlson’s theorem      236
Cauchy sequence      $5^1$
Center of mass      197
Central potential      90
Characteristic equation      2
Characteristic function      $2^1$ 221
Classical Weyl theorem      117
Closed graph theorem      $83^1$
Closed operator      $250^1$l
Closed quadratic form      $277^1$
Cluster decomposition      129
Commuting (unbounded) operators      $271^1$$272^1$
Compact operator      $199^1$ (see also “Relatively compact” “Relatively
Compact operator, determinant      323 382
Compact operator, general theory      $198^1$$206^1$ 316—338
Compact operator, Hilbert — Schmidt      $210^1$
Compact operator, ideal theory      $41^2$$44^2$
Compact operator, resolvent      244—260
Compact operator, trace class      $206^1$$213^1$
Compact sets      $97^1$ 244
Compact support, distributions      $139^1$
Compact support, functions      $111^1$
Complex scaling      see “Dilation analytic potentials”
Complex thresholds      191
Conditionally negative definite      215
Conditionally positive definite      214
Contented set      271
Continuous functional calculus      $222^1$
Contraction semigroup      $235^2$
Convex function      104
Convex set      $109^1$
Convolution, distributions      $7^2$
Convolution, functions      $6^2$
Core      $256^1$
Coupling constant      11
Critical value      346
Cwikel — Lieb — Rosenbljum bound      101
D-thresholds      189
Darwin correction      81
Decomposable operator      281
Deficiency indices      $138^2$
Degenerate eigenvalue      2
Density of states      313
Density of states measure      312
Determinant      323 382
Diagram, barely connected      125
Diagram, disconnected      125
Diagram, k-connected      129
Dilation analytic potentials      184
Dilation operators      56 183
Dirac operator      $337^2$
Direct integral      280 358
Direct sum, of Banach spaces      $78^1$
Direct sum, of Hilbert spaces      $40^1$
Dirichlet Laplacian      263
Dirichlet problem      $204^1$
Dirichlet — Neumann bracketing      262
Disconnected part      125
Disconnected string      129
Discrete spectrum      $236^1$ 13
Discriminant      296
Distribution of eigenvalues, Dirichlet Laplacian      260
Distribution of eigenvalues, Schrodinger operators      86
Distributions, compact support      $139^1$
Distributions, tempered      $134^1$
Domain, analytic function      $189^1$
Domain, form      $276^1$
Domain, function      $2^1$
Domain, unbounded operator      $249^1$
Dominated Convergence Theorem      $17^1$
Double well potential      34
Dual basis      305
Dual space      $43^1$
Dunford functional calculus      $245^1$
Dyson expansion      $282^2$
Eigenvalue      $188^1$
Eigenvalue, degenerate      2
Eigenvalue, discrete      13
Eigenvalue, multiplicity      9 316
Eigenvalue, nondegenerate      9 13
Eigenvalue, pseudo      48
Eigenvalue, simple      9
Eigenvalue, stable      29
Eigenvector      $188^1$
Eigenvector, generalized      316
Eigenvector, pseudo-      48
Elliptic operator      $112^2$ 346
Elliptic regularity      $49^2$
energy levels      11 79
Energy operator      see “Hamiltonian”
Equicontinuous function      $28^1$$30^1$
Ergodic operator      202
Essentially self-adjoint      $256^1$
Exceptional set      § XI.6 Vol.
Extension of an operator      $250^1$
Fan’s inequality      383
Fermi energy      314
Fermi gas picture      356
Fermi Golden Rule      52 59
Fermi statistics      $117^2$
Fermi surface      314
Fermion Fock space      $54^1$
Feynman — Kac formula      $279^2$
Fibers      280—281
Finite partition      208
First resolvent formula      1911
Fock space      53!
FORM      see also “Quadratic forms”
Form, core      $277^1$
Form, domain      $276^1$
Form, domain, of operator      $277^1$
Formal series      73
Fourier inversion theorem      $3^2$
Fourier transform      $1^2$
Friedrichs’ extension      $177^2$
Functional calculus      $222^1$ 245
Functions of rapid decrease      $133^1$
Generalized eigenspace      9
Generalized eigenvector      316
Generalized function      $148^1$
Generator group      268l
Generator semigroup      $237^2$
Geometric eigenspace      9
Geometric multiplicity      9
GGMT bound      94
Ghirardi — Rimini bound      367
Golden — Thompson inequality      $333^2$
Graph      831 250
Graph limits      293
Green’s functions      592 263
Ground state      201
Ground state energy      201
Gyration, radius of      197
H-smooth on $\Omega$      163
H-smooth operator      142
Hadamard’s three line theorem      $33^2$
Hahn — Banach theorem      $75^1$$77^1$
Hamiltonian      $303^1$
Hamiltonian, free      $55^2$
Hamiltonian, time dependent      $109^2$
Hausdorff — Young inequality      $11^2$
Helium Hamiltonian      80
Hermite functions      $142^1$
Hermite functions, completeness      $121^2$
Hermitian operator      see “Symmetric operator”
Hilbert space      $36^1$
Hilbert — Schmidt operators      $210^1$
Hilbert — Schmidt theorem      $203^1$
Holder continuous      $81^2$ 191
Holder’s Inequality      $68^1$
Holder’s inequality, matrices      385
Holder’s inequality, operators      $41^2$
Holomorphic semigroup      $252^2$
Holomorphic semigroup, bounded      $248^2$
Hughes-Eckart term      80
Hunziker’s theorem      see “HVZ theorem”
HVZ theorem      121
Hypercontractive semigroup      $258^2$
Hyperfine structure in hydrogen      19
Ichinose’s lemma      183
Index of a string      129
Infinitely divisible      221
Infinitesimal generator, group      $268^1$
Infinitesimal generator, semigroup      $237^2$
Infinitesimally small form      $168^2$
Infinitesimally small operator      $162^2$
Interpolation theorems      $32^2$
Inverse Fourier transform      $1^2$
Iorio — O’Carroll theorem      154
Irreducible      $232^2$
Jensen’s inequality (17)      104
Jordan content      271
Jordan normal form      10
Jost solution      §XI.8 Vol.
k-connected diagram      129
Kato — Agmon — Simon theorem      226
Kato — Rellich theorems      $162^2$ 15
Kato — Simon theorem      193
Kato’s inequality      $183^2$ 351
Kato’s projection theorem      22
Kato’s smoothness theorem      152
Kato’s theorem      $166^2$
KLMN theorem      $167^2$
Kohn’s theorem      301
Korteweg-de Vries equation      300
Kronig — Penny model      381
Lamb shift      81 86
Laplacian, Dirichlet      263
Laplacian, Neumann      263
Laplacian, on $\mathbb{R}^n$      $54^2$
Lattice, ordered sense      $310^1$
Lattice, subgroup sense      310
Lavine’s theorem      159
Levy — Khintchine formula      215
Levy — Khintchine Theorem      221
Lidskii’s theorem      328
Lieb — Thirring bound      368
Lipschitz      154
Local smoothness (operators)      163
Local Sobolev spaces      $51^2$ 253
m-accretive      $168^1$
Mathieu equation      $320^2$ 298
Measurable functions, sets      $14^1$$16^1$
Measurable unbounded operator-valued function      283
Measurable, weakly and strongly      64
Measure      $19^1$$25^1$
Meromorphic Fredholm theorem      107
Min-max principle      76
Monotone Convergence Theorem      $17^1$
Monotone convergence theorem, for nets      $106^1$
Multiplicity of an eigenvalue      9
Multiplicity theorem      $231^1$
Neumann Laplacian      263
Norm      $8^1$
Norm resolvent sense, convergence in      $284^1$$291^1$
Norm, operator      $9^1$
Normal coordinates      197
Normal operator      $246^1$
One-electron model of solids      312
One-parameter unitary group      $265^1$
Operator, adjoint, Banach space      $185^1$
Operator, adjoint, Hilbert space      $186^1$
Operator, adjoint, unbounded      $252^1$
Operator, bounded      $8^1$
Operator, compact      $199^1$
Operator, compact resolvent      244
Operator, contraction      $151^1$
Operator, decomposable      281
Operator, dilation      183
Operator, elliptic      $112^2$ 346
Operator, energy (Hamiltonian)      $303^1$
Operator, general theory      $81^1$$84^1$
Operator, Hamiltonian      $303^1$
Operator, Hermetian      see “Operator symmetric”
Operator, Hilbert — Schmidt      $210^1$
Operator, ideals      $41^1$$44^2$
Operator, infinitesimally form small      $168^2$
Operator, infinitesimally small      $162^2$
Operator, locally smooth      163
Operator, momentum      $304^1$
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте