Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Methods of Modern mathematical physics (vol. 4) Analysis of operators

Авторы: Reed M., Simon B.

Аннотация:

The book covers the theory about eigenvalues of Schrodinger operators. It is complete success in explaining clearly the basic concepts involved: perturbation theory (summability questions, fermi golden rule), min-max principle for discrete spectrum, Weyl theorem, HVZ theorem, the absence of singular continuous spectrum, ground state questions, periodic operators, semiclassic distribution of eigenvalues, compactness criteria.


Язык: en

Рубрика: Математика/Математическая Физика/Учебники/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1978

Количество страниц: 396

Добавлена в каталог: 24.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Operator, non-self-adjoint      316—338
Operator, norm      $9^1$
Operator, normal      $246^1$
Operator, positive      195
Operator, positivity improving      201
Operator, positivity preserving      201
Operator, relatively bounded      $162^2$
Operator, relatively compact      113
Operator, relatively form bounded      $168^2$
Operator, relatively form compact      369
Operator, resolvent      $188^1$
Operator, Schrodinger      79
Operator, self-adjoint      $187^1$
Operator, smooth      142
Operator, symmetric      $255^1$
Operator, tensor product      $299^1$
Operator, topologies      $182^1$$185^1$
Operator, trace class      $207^1$$210^1$
Operator, unbounded, general theory      $249^1$$312^1$
Order k strong asymptotic series      43
O’Connor — Combes — Thomas theorem      198
O’Connor’s lemma      196
Paley — Wiener theorems      $16^2$
Parseval’s relation      $45^1$$46^1$
Part of the spectrum in X      46
Partial trace      382
Period cell      303
Periodic potentials      279
Perron — Frobenius theorems      202 350
Perturbation series      2
Perturbation series, asymptotic      26
Perturbation series, Puiseux      4
Perturbation series, Raleigh — Schrodinger      1
Perturbation series, strong asymptotic      40
Perturbation series, wildly divergent      27
Phase space      $313^2$
Phragmen — Lindelof principle      236
Plancherel theorem      $10^2$
Plemelj — Smithies formulas      332
Poisson bracket      $314^2$
Poisson summation formula      380
Polar decomposition      $197^1$
Polarization identity      $63^1$
Positive definite      see also “Positive type”
Positive definite, conditionally      214
Positive distribution      $182^2$
Positive function      201
Positive operator      $195^1$
Positive type, distribution      $14^2$
Positive type, function      $12^2$
Positivity improving operator      201
Positivity preserving operator      $186^2$ 201
Principle of uniform boundedness      $81^1$
Product formula      $295^1$$297^1$
Projection      $187^1$
Projection valued measure (p.v.m.)      $234^1$$235^1$
Pseudo-eigenvalue      48
Pseudo-eigenvector      48
Puiseux series      4
Putnam — Kato theorem      157
Quadratic forms      $276^1$
Quadratic forms, closed      $277^1$
Quadratic forms, form core      $277^1$
Quadratic forms, form domain      $276^1$
Quadratic forms, Friedrichs’ extension      $177^2$
Quadratic forms, infinitesimally bounded      $168^2$
Quadratic forms, positive      $276^1$
Quadratic forms, relatively bounded      $168^2$
Quadratic forms, relatively compact      369
Quadratic forms, Riesz lemma      $43^1$
Quadratic forms, semi-bounded      $276^1$
Quadratic forms, strictly m-accretive      $281^1$
Quadratic forms, strictly m-sectorial      $282^1$
Quadratic forms, symmetric      $276^1$
Radius of gyration      197
Radon — Nikodym theorem      $25^1$
Rayleigh — Ritz technique      82
Rayleigh — Schrddinger coefficients      5—8
Rayleigh — Schrddinger series      1 5
Rayleigh’s theorem      364
Reduced disconnected part      131
Reduced resolvent      130
Relatively bounded      $162^2$
Relatively compact      113
Relatively form bounded      $168^2$
Relatively form compact      369
Rellich’s criterion      247
Rellich’s theorem      4
Resolvent      $188^1$
Resolvent set      $188^1$
Resonance eigenvalues      191
Resonance pole      55
Resonance thresholds      191
Retardation term      81
Riccati equation      96
Riemann — Lebesgue lemma      $10^2$
Riesz’s criterion      248
Riesz’s lemma      $43^1$
Rollnik potential      $170^2$
Scale of spaces      $278^1$
Schrodinger equation      $303^1$
Schrodinger operators      79
Schur basis      318
Schur — Lalesco — Weyl theorem      318
Schwartz space      $133^1$
Schwarz inequality      $38^1$
Secular equation      2
Segment property      256
Self-adjoint operator, bounded      $187^1$
Self-adjoint operator, unbounded      $255^1$
Semibounded operator      $137^2$
Semibounded quadratic form      $276^1$
Semigroup, $L^p$-contractive      $255^2$
Semigroup, contraction      $235^2$
Semigroup, holomorphic      $248^2$
Semigroup, hypercontractive      $258^2$
Semigroup, infinitesimal generator      $237^2$
Semigroup, strongly continuous      $235^2$
Singular support      $88^2$
Singular value of a compact operator      $203^1$
Smooth operator      142
Sobolev inequality      $31^2$
Sobolev lemma      $52^2$
Sobolev spaces      $50^2$ 253
Solid state theory      311
Sommerfeld correction      80
Spectral concentration      45—50
Spectral mapping theorem      $222^1$ 109 181—183
Spectral measures      $228^1$
Spectral measures, associated with a vector      $225^1$
Spectral projections      $234^1$
Spectral theorem, functional calculus form      $225^1$
Spectral theorem, multiplication operator form      $227^1$
Spectral theorem, p.v.m. form      $235^1$
Spectrum      118
Spectrum,absolutely continuous      $231^1$
Spectrum,approximate point      178
Spectrum,asymptotically in a set      46
Spectrum,continuous      $231^1$
Spectrum,continuous singular      $231^1$
Spectrum,discrete      $236^1$ 13
Spectrum,essential      $236^1$
Spectrum,point      $188^1$
Spectrum,residual      $188^1$
Spin-orbit correction      80
Spin-spin interaction      81
Stable eigenvalue      29
Standard $2^{-n}$ cube      271
Stark effect      $200^2$ 50 118
Stone’s formula      $237^1$
Stone’s theorem      $265^1$$267^1$
Strichartz’s theorem      $171^2$ 378
Strictly m-accretive form      $281^1$
Strictly m-accretive operator      $281^1$
Strictly m-sectorial form      $282^1$
Strictly positive function      201
String      129
Strong asymptotic series      40
Strong operator topology      $182^1$
Strong resolvent sense, convergence in      $284^1$$291^1$
Strongly continuous semigroup      235
Strongly continuous unitary group      265
Strongly measurable      $64^1$
Sturm oscillation theorem      92
Summability methods, Borel      44
Summability methods, Pade      63
Summability methods, regular      63
Support of a distribution      $139^1$
Support of a distribution, singular      $88^2$
Symmetric operator      $255^1$
Symmetric quadratic form      $276^1$
Tempered distributions      $134^1$
Temple’s inequality      84
Temple’s inequality, generalized      365
Tensor product, Hilbert spaces      $49^1$
Tensor product, operators      $299^1$
Tensor product, spectrum of      177
Time-dependent perturbation theory      51—60 66—68
Total mass      197
Trace class      207—$210^1$
Trotter product formula      $295^1$$297^1$
Trotter — Kato theorem      $288^1$
Uncertainty principle lemma      $169^2$
Uniform boundedness principle      see “Principle of uniform boundedness”
Uniform operator topology      $182^1$
Uniformly Holder continuous      191
Uniformly locally $L^p$      302
Unique continuation      226 239
Unitary operator      $39^1$
Virial theorem      231
von Neumann’s theorem      $268^1$
von Neumann’s uniqueness theorem      $275^1$
Watson’s theorem      44
Weak derivative      $138^1$
Weak graph limit      $294^1$
Weak topology      $93^1$
Weak-$L^p$      
$30^2$
Weak-$L^p$, inequalities      $32^2$
Weakly measurable (vector-valued) function      $114^1$
Weighted $L_2$ space      $76^2$ 168
Weinberg kernel      125
Weinberg kernel, symmetrized      131
Weinberg — Van Winter equation      126
Weyl relations      $275^1$
Weyl’s criterion      $237^1$
Weyl’s lemma      $53^2$
Weyl’s theorem, classical      117
Weyl’s theorem, essential spectrum      112
Width of a resonance      55
Wiener measure      $278^2$
Wiener measure, conditional      102
Wigner — Seitz cell      311
Wigner — von Neumann potential      223
wronskian      $150^2$
Young’s inequality      282
Zhislin’s theorem      89
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте