Авторизация
Поиск по указателям
De Barra G — Measure theory and integration
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Measure theory and integration
Автор: De Barra G
Аннотация: This updated and introductory text approaches integration via measure as opposed to measure via integration, an approach which makes it easier to grasp the subject. Apart from its central importance to pure mathematics, the material is also relevant to applied mathematics and probability, with proof of the mathematics set out clearly and in considerable detail. Numerous worked examples necessary for teaching and learning at undergraduate level constitute a strong feature of the book, and after studying statements of results of the theorems, students should be able to attempt the 300 problem exercises which test comprehension, for which detailed solutions are provided. The book stems from a long-running successful course and presents the knowledge and experience of Dr. de Barra who has long taught and researched measure theory in London University. This 2nd edition has been updated by the attachment of Afternotes indicating how the subject has developed from material in the text, and misprints from the original have now been corrected. The only pre-requisite is a first course in analysis, and what little topology required is developed within the text.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2000
Количество страниц: 236
Добавлена в каталог: 11.02.2014
Операции: Положить на полку |
Скопировать ссылку для форума |
Скопировать ID
Предметный указатель
-sequence 18 32 36 205
-sequence 18 32 36 205
-norm 109 110
-space 109 110
-finite 94 98 139 149 171 179 181
-ring 93
Absolute convergence 21 64
Absolutely continuous functions 160 163 228
Absolutely continuous functions, measure 139 161
Algebra 30
Algebra, -algebra 30
Almost everywhere (a.e.) 40 104
Almost uniform convergence 125 128 132
Almost uniformly fundamental 127
Angular measure 187
Approximating measure 45
Arithmetic-geometric mean inequality 114
Axiom of Choice 17 42
Borel measurable 40 165 169 187 211 233
Borel measure 102 158
Borel set 32 43 98 101 102 187 203 211 228
Bounded linear functional 148 174 175
BV [a, b] 81 160 163
Cantor set 24 37 157 202 227
Cantor's function 43 45 196 203
Cantor-like sets 23 26 50 200 202 203
cardinal number 22 203
Cartesian product 15 176
Cauchy sequence 20 118 122
Change of variable 167 234
Characteristic function 22 39
Closure 17
Complement 15
Complete measure 94 101 142
Complete metric space 20 118 124
Completion of a measure 100 102 185
Complex-valued functions 189
Convergence in measure 121 128 131 221
Convergence in the mean 123 128 131 132 221 229
Convergence in the mean of order p 123 128 131 132 223
Convergence, absolute 21 64
Convergence, almost everywhere 118 125 128
Convergence, almost uniform 125 128 132
Convergence, uniform 125 128 131 132 229 235
Convergence, uniform a.e. 125 128
Convex function 5 111 163 215
Convolution 191
Countable set 22
Countable subadditivity 29 95
Countably additive 31 95
De Morgan's laws 15
Dense 17
Density of a set 35
Derivates 77 209
Differentiable 65 87 111
Distance (between sets) 43
Distribution function 156 158
Domain 21
Dual space 148 151 152 227
Egorov's theorem 126 222
Elementary set 176
Equipotent 22
Equivalence class 17
Equivalence class, relation 16
Essential infimum (ess inf) 41 104
Essential supremum (ess sup) 40 104
Essentially bounded 41 104
Euclidean space 16
Extended real numbers 37
Extension of a function 21
Extension of a measure 95
Fatou's lemma 57 58 60 63 88 105 119 123 204 205 208 213
Fourier transform 192
Fubini's theorem 182
Function of bounded variation 81 160 163
Function, Borel 40 165 169 205 228 233
Function, Cantor's 43 45 196 203
Function, characteristic 22
Function, composite 21
Function, convex 5 111 163 215
Function, distribution 156
Function, integrable 61 106 164
Function, Lebesgue's 25 26 78 157 159 163 196 211 234
Function, measurable 38 93 103 169
Function, non-differentiable 79
Function, simple 54
Function, step 22
Function, strictly concave 52
Function, subadditive 30 201
Fundamental in measure 122
Fundamental sequences 121
Generated algebra 32
Generated algebra, -algebra 32
Generated algebra, -ring 94
Generated algebra, ring 94
Hahn decomposition 133 136 137 138 141 223 224 225
Hausdorff measure 45 52 99 158 203
Hausdorff measure, dimension 50 53 159 203
Hausdorff measure, measure function 45 158
Hausdorff measure, outer measure 45
Heine — Borel theorem 18
Helly's theorem 158
Hereditary 94
Hoelders inequality 115 148 150 151 216 217 223 235
Identity mapping 21
Indefinite integral 87 169 171
Induction 16
Infimum 18
Integrable 61 106 164
integral 54 105 106
Integration by parts 65 163 164
Intervals 27
Inversion theorem 195
Iterated limit 20
Iterated limit, integral 182 231 232 233
Jensen's inequality 113 195
Jordan decomposition 137 139 225
Laplace transform 191
Lebesgue decomposition 146 147
Lebesgue dominated convergence theorem 63 107 123
Lebesgue function 25 26 78 157 159 163 196 211 234
Lebesgue integral 54 55
Lebesgue measurable functions 38
Lebesgue measurable set 30 185
Lebesgue measure 31 94 185
Lebesgue monotone convergence theorem 57 105
Lebesgue outer measure 27
Lebesgue set 90 91
Lebesgue — Stieltjes measure 156
Lebesgues Differentiation Theorem 84 85
Limit, lower 18
Limit, one-sided 19
Limit, point 18
Limit, upper 18
Lindeloef's theorem in 23 84
Lindeloef's theorem in 23
Linear functional 148 172
Lipshitz condition 163 228
Mean fundamental sequence 147
Measurable 30 93 97
Measurable function 38 93 103 169
Measurable rectangle 176
Measurable space 102
Measure 31 47 94 153 156 157 179
Measure space 102
Metric 17 116 118 124 125 221
Metric outer measure 49
Minkowski's inequality 115 118 218 219 226
Modulus of continuity 52 159
Monotone class 177 180
Mutually singular measures 137
Negative part of a function 61
Negative set 134
Negative variation of a function 81 164
Non-differentiable function 79
Non-measurable set 42 179 203
Norm 109 110 148 172 226 227
Normed vector space 147
Null set 134
O, o notation 20
One-to-one mapping 21
open 17
Ordinals 182
Ordinate set 184
Outer measure 27 45 94
Parseval's theorem 193 196
Partitions 71
Plancherel transform 194
Positive linear functional 172
Positive part of a function 61
Positive set 134
Positive variation of a function 81 164
primitive 156 157 159
Principle of Finite Induction 16
Product measure 181
Product of measurable spaces 177
Product space 176 185
Pseudometric 17 95 211
Radon — Nikodym derivative 143 167
Radon — Nikodym theorem 139
RANGE 21
rectangle 176
Rectifiable 82
Reflexive space 227
Regular measure 35
Relative topology 18
Riemann integrable 71
Riemann integral 55 71 208
Riemann — Lebesgue lemma 75 235
Riesz Representation Theorem for 151
Riesz Representation Theorem for 148
Riesz Representation Theorem for C (I) 172
Ring 93
Schwarz inequality 15 216 218
Sections of functions 179
Sections of sets 178
Sequence, Cauchy 20
Sequence, closed 17
Sequence, compact (closed and bounded) 18 51 159
Sequence, dense 17
Sequence, double 20
Sequence, Lebesgue 90 91
Sequence, measurable 30 93 97
Sequence, monotone decreasing 20
Sequence, monotone increasing 19
Sequence, non-measurable 42 179 203
Sequence, nowhere dense 17 201
Sequence, open 17
Sequence, perfect 17 25
Series, absolutely convergent 21 64
Set, Borel 32 43 98 101 102 187 203 211 228
Sgn x 22
Signed measure 133
Simple function 54
Strictly convex 111
Subadditive 29 95
Support of a measure 157
Supremum 18
Symmetric difference 15
Tchebychev's inequality 107
topology 17
Total variation of a function 81
Total variation of a measure 138
Translation invariance 28 46 186
Uniform convergence 125 128 131 132 229 235
Uniformly fundamental 221
union 15
Unit sphere 187
Variation (of a function), bounded 81
Variation (of a function), negative 81
Variation (of a function), positive 81
Variation (of a function), total 81
Variation (of a measure), total 138
Weakly convergent 120
Реклама