Авторизация
Поиск по указателям
Bäck T. — Evolutionary Algorithms in Theory and Practice
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Evolutionary Algorithms in Theory and Practice
Автор: Bäck T.
Аннотация: This book presents a unified view of evolutionary algorithms: the exciting new probabilistic search tools inspired by biological models that have immense potential as practical problem-solvers in a wide variety of settings, academic, commercial, and industrial. In this work, the author compares the three most prominent representatives of evolutionary algorithms: genetic algorithms, evolution strategies, and evolutionary programming. The algorithms are presented within a unified framework, thereby clarifying the similarities and differences of these methods. The author also presents new results regarding the role of mutation and selection in genetic algorithms, showing how mutation seems to be much more important for the performance of genetic algorithms than usually assumed. The interaction of selection and mutation, and the impact of the binary code are further topics of interest. Some of the theoretical results are also confirmed by performing an experiment in meta-evolution on a parallel computer. The meta-algorithm used in this experiment combines components from evolution strategies and genetic algorithms to yield a hybrid capable of handling mixed integer optimization problems. As a detailed description of the algorithms, with practical guidelines for usage and implementation, this work will interest a wide range of researchers in computer science and engineering disciplines, as well as graduate students in these fields.
Язык:
Рубрика: Биология /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1996
Количество страниц: 314
Добавлена в каталог: 07.12.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
-strategy 60 212
-strategy 58 88 212
-strategy 88
-strategy 59
-strategy 88
-environment 37 38
(1+1)-strategy 59
(1,1)-strategy 57 212
1/5-success rule 67 83 86 102 200
Absolute value distribution 230—232
Absorbing state 105 200
Absorption time 226
Absorption time, expected 208 215 228
Ackley's function 142—143 148 154 185
Adaptation 9 32 108 117
Adaptation, somatic 9
Adaptive landscape 60
Adaptive plan 107
Adaptive surface 9 34
Adaptive zone 9
Allele 16
Allele, converged 283n
Allele, heterozygotic 17
Allele, homozygotic 17
Allele, lost 283n
Alphabet 51
Alphabet, binary 128
Amino acid 12 133
Aneuploidy 23
ANN see "Artificial neural network"
Anticodon 14
Approximation algorithm 56
artificial intelligence 29 29—34 61
Artificial intelligence, knowledge-intensive period 30
Artificial intelligence, subsymbolic period 30 57
Artificial intelligence, symbolic period 30
Artificial life 30 34 163n
Artificial neural network 31
Autocorrelation 39—40 61
Automatic programming 57 61 107n
Average schema fitness 125
Bias 120 121 167 283
Bias, positional 114 116
Binomial distribution 67 97
bitstring 109 113 114 150
Bivalents 17
Blank symbol 52
Bohachevsky function 138
Box dimension 147n 148
Brittleness of classical AI systems 32
Brittleness of programming languages 107n
Broadcast language 107
Building block 126 128 201
Carbon-cycle 27n
Cause 44
CDL see "Component distribution language"
Central dogma of molecular genetics 14
Centromere 17
Chapman — Kolmogorov-equation 105
Characteristic equation 178
Chromatid 17
Chromatide 21
Chromosome 15 21 133 134
Chromosome, homologous forms 16
Church's thesis 52
Classifier system 34 107
Client-server 286
Coding strand 13
Codon 15 133
Combinatorial optimization problem 38
Communication 285—287
Component distribution language 286 287
Confidence 151
Confidence interval 152
Constant overall organization 25
Constraint 36 133 139
Constraint in Evolution Strategy 80
Constraint in Evolutionary Programming 93 99
Constraint in Genetic Algorithms 121
Constraint, active 36
Constraint, inactive 36
Constraint, satisfied 36
Constraint, violated 36
Convergence reliability 150 154—159 164 217 235 237 255
Convergence velocity 85 86 88 102 106 133 138 139 150—154 159 164 205 210—221 228 233 235 243—255
Convergence velocity of -ES 89
Convergence velocity, counting ones 206
Convergence velocity, expected 211
Convergence with probability one 48 61 87 101 128 133 201
Coordinate transformation 70
Correlated mutation 150
Correlation coefficient 93
Corridor model 85
Counting ones 201—221 228
Covariance matrix 69
Credit assignment problem 31n 198n
Crossing-over see "Crossover"
Crossover 18 22 61 95 114—117 168 195 244
Crossover, multi-point 114 241
Crossover, one-point 114 125
Crossover, probability 114 116 235 240 241
Crossover, punctuated 116 131
Crossover, segmented 116
Crossover, shuffle 116
Crossover, two-point 150
Crossover, uniform 115 241 244 252 254
Cytology 15n
Darwin 197n
Darwin theory of evolution 8
Darwin, Charles 8
Data collection 278
Deception 128
Decision problem 55
Decoding function 109 111 122
Deficiency 21
Deletion 21 67n
Deme 11 236
Deoxyribonucleic acid see "DNA"
Diffusion model 236—238
Diploidy 16 35
Discontinuity 140
Distance matrix 40
Diversity 121 164 167 168 176 195 217 224 229 244 252
DNA 11 14 19
DNA, repair mechanism 19
DNA, repair mechanism, excision repairing 20n
DNA, repair mechanism, information transfer correction 20n
DNA, repair mechanism, postreplicative repairing 20n
DNA-polymerase 12
Dominance 17 35
Dominance, incomplete 17
Drosophila melangonaster 198
DTM see "Turing machine"
Duplication 21 67n
Effect 44
Elitist 97n 179
Environment changing 79
EP see "Evolutionary Programming"
Epistasis 12 107
EPS 1.0 275—284
Equivalence relation 202
Error function 85
Error rate 27 61
Error threshold 28
ES see "Evolution Strategy"
Euclidean distance 37 85
Euclidean norm 37
Euploidy 23
Evolution 64 96 131 150
Evolution of macromolecules 24
Evolution strategy 59 63 82 66—93 95 98 116 117 131 137 143 149 153 154 156 157 176 198 229 233 242 275—284
Evolution Strategy, 67 82
Evolution Strategy, 68 133
Evolution Strategy, 68 158
Evolution Strategy, (1+1) 82 84 102 199
Evolution Strategy, history 66—68
Evolution Strategy, least square estimation 45
Evolution Strategy, multimembered 67
Evolution Strategy, outline 81
Evolution Strategy, standard parameterization 82
Evolution Strategy, theory 83—91
Evolution Strategy, TSP 43
Evolution Strategy, two membered 67
Evolution window 86
Evolution, chemical 24 27n
Evolution, simulation of 107
Evolution, synthetic theory of 8
Evolutionary algorithm 63 63—66 163 166 199
Evolutionary Algorithm, experimental comparison 149—159
Evolutionary Algorithm, outline 66
Evolutionary Algorithm, parallel 236—238
Evolutionary Algorithm, path-oriented 164
Evolutionary Algorithm, result 65
Evolutionary Algorithm, running time 65 166
Evolutionary Algorithm, software 275—284
Evolutionary Algorithm, volume-oriented 164
Evolutionary operation 60
Evolutionary programming 59 63 66 91—106 111 116 117 121 131 137 176 182 198 221 229 233 275—284
Evolutionary Programming, (1+1) 103
Evolutionary Programming, continuous meta- 92
Evolutionary Programming, continuous standard 92
Evolutionary Programming, least square estimation 45
Evolutionary Programming, meta- 92 100 149 153 154
Evolutionary Programming, outline 100
Evolutionary Programming, Rmeta- 92
Evolutionary Programming, standard 92
Evolutionary Programming, standard parameterization 101
Evolutionary Programming, theory 101—106
Evolutionary Programming, TSP 44
EVOP see "Evolutionary Operation"
EVOS 1.0 275—284
Excess productivity 25
Excess productivity, average 25
Exchange probability 114
Exon 15
Expected loss 126
Expected value 118 170
Expected value, maximal 170 240 241
Expected value, minimal 170
Exploitation 164 167
Exploration 164 167
Exponential generating function 173
Exponential growth 38 41 49 126 127 170 192
Exponential time complexity 53 209 228
Factorial design 60
Failure probability 202 223
Farm 287
Feasible range 139
Feasible region 35 37 48
Fibonacci-sequence 177
Finite state control 52
Finite-state-machine 59 60
Fitness 9 93 163
Fitness function 63 64 68 235 239
Fitness landscape 9 28
Fletcher — Powell function 143—144 148 154 156 188 192
Fletcher — Powell function, data 265—267
Floating point unit 285
format string 279 284
Fractal dimension 145
Fractal function 144—148 157 188
Fractal geometry 145
Fractality 144
Frequency, absolute 97
Frequency, relative 97
FSM see "Finite-state-machine"
GA see "Genetic Algorithm"
Game-playing 31
Gamete 17 61
Gamma-function 49
Gene 8 12 15 133 134
Generation gap 235n
Generation transition function 64
GENESIS 4.5 275
GENEsYs 2.0 275—284
Genetic algorithm 29 59 61 63 66 96 122 106—131 137 139 149 155—157 164 167 177 184—255 275—284 287
Genetic Algorithm, 213—216
Genetic Algorithm, 211
Genetic Algorithm, 216—221
Genetic Algorithm, 210
Genetic Algorithm, (1+1) 199 209 210 222
Genetic Algorithm, (1,100) 230
Genetic Algorithm, least square estimation 45
Genetic Algorithm, outline 121
Genetic Algorithm, standard parameterization 123
Genetic Algorithm, theory 123—130
Genetic Algorithm, TSP 43
genetic code 14 61
Genetic drift 11
Genetic operator 63 122 131
Genetic operator, asexual 65
Genetic operator, panmictic 65
Genetic operator, sexual 65
Genetic Programming Paradigm 107n
Genetics 108
Genome 15 34
Genome, human 23
Genotype 9 12 14 15 34 113 116 117 121 133 134 197
Global minimum 35 94 109
Global minimum point 35
Global optimization method, classification 45
Global optimization method, path-oriented 46
Global optimization method, volume-oriented 46
Global optimization problem 35 61
Global optimization problem, computational complexity 51—57
Global optimization problem, constrained 36
Global optimization problem, unconstrained 36
Global optimum 128 141 155
Global random search 50 49—51 61 87
gnuplot 3.4 276 282
Gones 17
Gradient 44n
Gradualism 197n
Gray code 110—111 113 221—232
Grid search 38 109 128
Growth ratio 168
Halt-state 52
Halting problem 107n
Hamming cliffs 229
Hamming distance 39 110
Haploidy 16
Helios 286—287
hessian 44n
Hillclimbing 10 143
histogram 154
Hopeful monsters 197
Hypercycle 27 61
Hyperploidy 23
Hypoploidy 23
Implicit parallelism 128
Improvement probability 202 206 222 224
Improvement probability, counting ones 202 205
Improvement probability, multimodal 224
Incest 73n
Index transformation 69n
Individual 68 94 116
Individual, offspring 64
Individual, parent 64
Individual, space of 63 63—64
Initialization in Evolution Strategy 80
Реклама