Авторизация
Поиск по указателям
Bäck T. — Evolutionary Algorithms in Theory and Practice
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Evolutionary Algorithms in Theory and Practice
Автор: Bäck T.
Аннотация: This book presents a unified view of evolutionary algorithms: the exciting new probabilistic search tools inspired by biological models that have immense potential as practical problem-solvers in a wide variety of settings, academic, commercial, and industrial. In this work, the author compares the three most prominent representatives of evolutionary algorithms: genetic algorithms, evolution strategies, and evolutionary programming. The algorithms are presented within a unified framework, thereby clarifying the similarities and differences of these methods. The author also presents new results regarding the role of mutation and selection in genetic algorithms, showing how mutation seems to be much more important for the performance of genetic algorithms than usually assumed. The interaction of selection and mutation, and the impact of the binary code are further topics of interest. Some of the theoretical results are also confirmed by performing an experiment in meta-evolution on a parallel computer. The meta-algorithm used in this experiment combines components from evolution strategies and genetic algorithms to yield a hybrid capable of handling mixed integer optimization problems. As a detailed description of the algorithms, with practical guidelines for usage and implementation, this work will interest a wide range of researchers in computer science and engineering disciplines, as well as graduate students in these fields.
Язык:
Рубрика: Биология /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1996
Количество страниц: 314
Добавлена в каталог: 07.12.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Initialization in Evolutionary Programming 99
Initialization in Genetic Algorithms 120
Interleave-constructor 287
Interphase 17
Intron 15
inversion 21
k-step failure probability 202 223
k-step improvement probability 202 222
k-step improvement probability, counting ones 202
Koch curve 145
Kolmogorov — Smirnov test 151 155
Lamarckism 14
Learning 30 32
Learning by analogy 33
Learning by deduction 33
Learning by induction 33 61
Learning by instruction 33
Learning by observation and discovery 33
Learning from examples 33
Learning, unsupervised 33
Least square estimation 44
Lebesgue measure 47 48
Level set 37
Link 285
Link adapter 286
Link interface 285
Load balancer 287
Local maximum 224
Local minimum 37 39 56 140
Local minimum with respect to 38
Local optimum 143 226
Logarithmic time complexity 229
Lost alleles 114
Machine learning 30—34
Management technique 60
Markov chain 105 104—106 129 200 223
Markov chain, absorbing 200
Markov chain, ergodic 201n
Markov chain, homogenous 105
Markov process 105
Master-slave algorithm 238
MCDM see "Multiple criteria decision making"
Meiosis 15n 17
Meiosis, metaphase 17
Meiosis, pachytene 17
Meiosis, pachyteous 21
Mendelian laws 16
Merit factor 39
Message passing 285
Messenger ribonucleic acid 13 15n
Meta-evolution 233—255
Meta-Evolutionary Algorithm 234 239 287
Metabolism 24 61
Metrics 36
Migration model 236—237
MIMD 238 285
Minimization 35
Minkowski-dimension 147n
Mitosis 15n 16
Mixed-integer problem 234
Molecular Darwinism 24 23—29 47
Monotony 129 179 201
Monte — Carlo see "Uniform random search"
mRNA see "Messenger ribonucleic acid"
Multi-armed bandit 117 131
Multimodality 37 79 118 137 142 143 154 229
Multiple criteria decision making 35
Mutagene 20
Mutation 8 18—24 34 51 57 59 61 63 65 71 84 117 124 129 131 150 168 176 180 195 242
Mutation ellipsoid 69 70
Mutation in Evolution Strategy 71—73
Mutation in Evolutionary Programming 93—93 95
Mutation in Genetic Algorithms 113 197—197 232
Mutation of base pairs 19 197
Mutation of chromosomes 20
Mutation of genes 19 20
Mutation of genomes 20 197
Mutation, correlated 69
Mutation, generative 20
Mutation, hybrid 254
Mutation, large 20
Mutation, lethal 80
Mutation, macro- 197
Mutation, multiple 58
Mutation, normally distributed 67
Mutation, probability 19 113 198 224 233 235 240 242—255
Mutation, probability, length-independent 209
Mutation, probability, optimal 206 228 232 252
Mutation, progressive 21
Mutation, small 20
Mutation, somatic 20
Mutator-gene 131
Nabla-operator 44n
NDTM see "Turing machine"
Neighborhood 38 224
Neodarwinism 8 15
Network-server 286
Nonlinear parameter estimation 61
Norm 36
Normal distribution, logarithmic 72
Normal distribution, n-dimensional 69 70
NP 55—56
NP-completeness 43 55 61
Nucleotide base 11 131 133
Object variable 68 109 117 279 284
Objective function 35 167
Objective function, separable 230
Offline-performance 235 283
Offspring 74 75 118
Offspring, optimal number of 90
Oncogene 20
One Max 201 see
Online-performance 235 283
Ontogenesis 16
OpenWindows 277
Optimal allocation of trials 126
Optimization 35 108
Order statistics 88 210 228
Orthogonal transformation 71
P 53—56
Parallel constructor 287
Parallelism, asynchronous 285
Parallelism, coarse-grained 237
Parallelism, fine-grained 237
Parameter optimization 108 114 199 229
Parameterization problem 233
Pareto-set 35
Payoff, average 127
Payoff, observed 127
Perceptron 31
Permutation 41 43 173
Phenotype 8 12 14 34 96 133 164 197
Phylogeny 16 198
pipe 286
Pipe-constructor 286
Plateau 140
Pleiotropy 12 95 96
Polygeny 12 96
Polynomial transformation 55
Polyploidy 23
Population 63 66 74 107 118 121 127 141 150
Population sequence 64
Population size 66 122 149 198 233 235 240
Population size, optimal 233
Primary structure 12
Principle of minimal alphabets 128
Progress, average 153
Progress, measure 151
Promoter 13
Protein 133
Protein biosynthesis 12
Pseudo boolean objective function 109 128
Pseudo boolean objective function, multimodal 224 229
Pseudo boolean objective function, unimodal 208 224 227
Pseudoboolean optimization problem 39 39 55 56 199
Punctuated equilibria 197n
Purine base 11
Pyrimidine base 11
Quality factor 24
Quasi-species 26 26—29
Random walk 78 94 170 180 182n
Rate equation 24 27
Reachability 129 130 201
READ 286 287
Read-write head 52
Recessivity 17 35
Recombinants 17
Recombination 34 63 125 129 131 150 177 185
Recombination in Evolution Strategy 73—77
Recombination in Evolutionary Programming 95—96
Recombination in Genetic Algorithms 114—117
Recombination of strategy parameters 75
Recombination, discrete 74 76 241 242 252
Recombination, generalized 76
Recombination, intermediate 74 76 242
Recombination, intermediate, generalized 74
Recombination, number of possible results 76—77
Recombination, panmictic 74 76
Recurrence relation 177
Repair-enzyme 131
Replication 12
Replicator 287
Replicon 15
Representation, internal 30
Representation, subsymbolic 31
Representation, symbolic 30
Reproductive plan 107
Ribosome 13 14
RNA 14
RNA-polymerase 13
Robustness 137
Rosenbrock's function 138
Rotation angle 68 70—72 279 284
Rotation matrix 70
Rote learning 32
Roulette wheel 118
RP 56
Saddle-crossing 98
Sample mean 220
Sample size 151 153
Sampling error 118
Samuel's checkers player 31n
Scalability 138
Scaling 93 111—113 118 122 167 169 195
Scaling factor 103
Scaling window 113 123 150 192 235
Scaling, exponential 111 192
Scaling, linear dynamic 111 150 169 192—193
Scaling, linear static 111
Scaling, logarithmic 111 192
Scaling, sigma truncation 112
Schema 124 133
Schema theorem 126 169 192
Schema, defining length 124 128
Schema, instance 124
Schema, order 124
Schema, survival probability 124
Schemata number of 128
Scoring polynomial 31n
Scripton 15
Search, heuristic 33
Secondary structure 12
Segment switch rate 116
Selection 34 51 63 64 68 112 157 163—195
Selection in Evolution Strategy 78—80
Selection in Evolutionary Programming 96—99
Selection in Genetic Algorithms 117—120
Selection, 78 98 174—179 182
Selection, 91 98
Selection, 185
Selection, 78 79 150 174—179 182 194 240
Selection, (1+1) 67
Selection, (15,100) 150
Selection, based on preservation 181
Selection, Boltzmann tournament 195n 280
Selection, control parameter 195
Selection, criterion 26
Selection, directed 164
Selection, disruptive 164
Selection, dynamic 181
Selection, elitist 129 133 157 182 200 202 232 241 247
Selection, experiments 184 193
Selection, exponential ranking 172
Selection, extinctive 131 181 183 249
Selection, extinctive, left 182
Selection, extinctive, right 182
Selection, hard 165
Selection, linear ranking 169—172 174 176 181 185 194 240 241
selection, natural 8 163—164
Selection, operator 63
Selection, preservative 133 183
Selection, probabilistic 96
Selection, probability 117 165—183
selection, proportional 117 122 128 150 167—169 181 185 188 192 194 240 244 250
Selection, pure 182
Selection, soft 98 165
Selection, stabilizing 164
Selection, static 181
Selection, taxonomy 180—183
Selection, tournament 172—174 176 181 185 194 240 241 247 252
Selective pressure 165—195 243—255
Selective pressure, control of 179
Selective value 25
Self-adaptation 68 73 75 79 92 94 116 131 139 150 217 229 241 254
Self-affinity 147
Self-organization 25 34
Self-reproduction 24 27 61
Self-similarity 144
Sequence prediction 61
Shared memory 285n
Shekel's foxholes 138
Shifting balance theory 11
SIMD 238
Simulated annealing 195n
Skew-symmetry 40
Software, system architecture 277
Speciation 197
Speedup 216 219 228
sphere model 85 102 103 138 139 147 185 230
Sphere model with noise 157
Spinning wheel 118
splicing 15n
SPREAD 120
Stability 158
Stagnation 200 205
Stagnation probability 202 223
Standard code 110 113 221—232
Standard deviation 68 71 72 84 86 93 150 242 279 284
Start distribution 105
Start-state 52
State transition 53
Step function 139—142 188
Stirling numbers 76
Stochastic process 104
Stochastic process with discrete time 105
Stochastic Universal Sampling 120
Strategy parameter 68 69 73 241 254
Structure evolution 234
Subordinate-constructor 286
Subpopulation 107
Реклама