Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bäck T. — Evolutionary Algorithms in Theory and Practice
Bäck T. — Evolutionary Algorithms in Theory and Practice



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Evolutionary Algorithms in Theory and Practice

Автор: Bäck T.

Аннотация:

This book presents a unified view of evolutionary algorithms: the exciting new probabilistic search tools inspired by biological models that have immense potential as practical problem-solvers in a wide variety of settings, academic, commercial, and industrial. In this work, the author compares the three most prominent representatives of evolutionary algorithms: genetic algorithms, evolution strategies, and evolutionary programming. The algorithms are presented within a unified framework, thereby clarifying the similarities and differences of these methods. The author also presents new results regarding the role of mutation and selection in genetic algorithms, showing how mutation seems to be much more important for the performance of genetic algorithms than usually assumed. The interaction of selection and mutation, and the impact of the binary code are further topics of interest. Some of the theoretical results are also confirmed by performing an experiment in meta-evolution on a parallel computer. The meta-algorithm used in this experiment combines components from evolution strategies and genetic algorithms to yield a hybrid capable of handling mixed integer optimization problems. As a detailed description of the algorithms, with practical guidelines for usage and implementation, this work will interest a wide range of researchers in computer science and engineering disciplines, as well as graduate students in these fields.


Язык: en

Рубрика: Биология/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1996

Количество страниц: 314

Добавлена в каталог: 07.12.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Initialization in Evolutionary Programming      99
Initialization in Genetic Algorithms      120
Interleave-constructor      287
Interphase      17
Intron      15
inversion      21
k-step failure probability      202 223
k-step improvement probability      202 222
k-step improvement probability, counting ones      202
Koch curve      145
Kolmogorov — Smirnov test      151 155
Lamarckism      14
Learning      30 32
Learning by analogy      33
Learning by deduction      33
Learning by induction      33 61
Learning by instruction      33
Learning by observation and discovery      33
Learning from examples      33
Learning, unsupervised      33
Least square estimation      44
Lebesgue measure      47 48
Level set      37
Link      285
Link adapter      286
Link interface      285
Load balancer      287
Local maximum      224
Local minimum      37 39 56 140
Local minimum with respect to $\mathcal{N}$      38
Local optimum      143 226
Logarithmic time complexity      229
Lost alleles      114
Machine learning      30—34
Management technique      60
Markov chain      105 104—106 129 200 223
Markov chain, absorbing      200
Markov chain, ergodic      201n
Markov chain, homogenous      105
Markov process      105
Master-slave algorithm      238
MCDM      see "Multiple criteria decision making"
Meiosis      15n 17
Meiosis, metaphase      17
Meiosis, pachytene      17
Meiosis, pachyteous      21
Mendelian laws      16
Merit factor      39
Message passing      285
Messenger ribonucleic acid      13 15n
Meta-evolution      233—255
Meta-Evolutionary Algorithm      234 239 287
Metabolism      24 61
Metrics      36
Migration model      236—237
MIMD      238 285
Minimization      35
Minkowski-dimension      147n
Mitosis      15n 16
Mixed-integer problem      234
Molecular Darwinism      24 23—29 47
Monotony      129 179 201
Monte — Carlo      see "Uniform random search"
mRNA      see "Messenger ribonucleic acid"
Multi-armed bandit      117 131
Multimodality      37 79 118 137 142 143 154 229
Multiple criteria decision making      35
Mutagene      20
Mutation      8 18—24 34 51 57 59 61 63 65 71 84 117 124 129 131 150 168 176 180 195 242
Mutation ellipsoid      69 70
Mutation in Evolution Strategy      71—73
Mutation in Evolutionary Programming      93—93 95
Mutation in Genetic Algorithms      113 197—197 232
Mutation of base pairs      19 197
Mutation of chromosomes      20
Mutation of genes      19 20
Mutation of genomes      20 197
Mutation, correlated      69
Mutation, generative      20
Mutation, hybrid      254
Mutation, large      20
Mutation, lethal      80
Mutation, macro-      197
Mutation, multiple      58
Mutation, normally distributed      67
Mutation, probability      19 113 198 224 233 235 240 242—255
Mutation, probability, length-independent      209
Mutation, probability, optimal      206 228 232 252
Mutation, progressive      21
Mutation, small      20
Mutation, somatic      20
Mutator-gene      131
Nabla-operator      44n
NDTM      see "Turing machine"
Neighborhood      38 224
Neodarwinism      8 15
Network-server      286
Nonlinear parameter estimation      61
Norm      36
Normal distribution, logarithmic      72
Normal distribution, n-dimensional      69 70
NP      55—56
NP-completeness      43 55 61
Nucleotide base      11 131 133
Object variable      68 109 117 279 284
Objective function      35 167
Objective function, separable      230
Offline-performance      235 283
Offspring      74 75 118
Offspring, optimal number of      90
Oncogene      20
One Max      201 see
Online-performance      235 283
Ontogenesis      16
OpenWindows      277
Optimal allocation of trials      126
Optimization      35 108
Order statistics      88 210 228
Orthogonal transformation      71
P      53—56
Parallel constructor      287
Parallelism, asynchronous      285
Parallelism, coarse-grained      237
Parallelism, fine-grained      237
Parameter optimization      108 114 199 229
Parameterization problem      233
Pareto-set      35
Payoff, average      127
Payoff, observed      127
Perceptron      31
Permutation      41 43 173
Phenotype      8 12 14 34 96 133 164 197
Phylogeny      16 198
pipe      286
Pipe-constructor      286
Plateau      140
Pleiotropy      12 95 96
Polygeny      12 96
Polynomial transformation      55
Polyploidy      23
Population      63 66 74 107 118 121 127 141 150
Population sequence      64
Population size      66 122 149 198 233 235 240
Population size, optimal      233
Primary structure      12
Principle of minimal alphabets      128
Progress, average      153
Progress, measure      151
Promoter      13
Protein      133
Protein biosynthesis      12
Pseudo boolean objective function      109 128
Pseudo boolean objective function, multimodal      224 229
Pseudo boolean objective function, unimodal      208 224 227
Pseudoboolean optimization problem      39 39 55 56 199
Punctuated equilibria      197n
Purine base      11
Pyrimidine base      11
Quality factor      24
Quasi-species      26 26—29
Random walk      78 94 170 180 182n
Rate equation      24 27
Reachability      129 130 201
READ      286 287
Read-write head      52
Recessivity      17 35
Recombinants      17
Recombination      34 63 125 129 131 150 177 185
Recombination in Evolution Strategy      73—77
Recombination in Evolutionary Programming      95—96
Recombination in Genetic Algorithms      114—117
Recombination of strategy parameters      75
Recombination, discrete      74 76 241 242 252
Recombination, generalized      76
Recombination, intermediate      74 76 242
Recombination, intermediate, generalized      74
Recombination, number of possible results      76—77
Recombination, panmictic      74 76
Recurrence relation      177
Repair-enzyme      131
Replication      12
Replicator      287
Replicon      15
Representation, internal      30
Representation, subsymbolic      31
Representation, symbolic      30
Reproductive plan      107
Ribosome      13 14
RNA      14
RNA-polymerase      13
Robustness      137
Rosenbrock's function      138
Rotation angle      68 70—72 279 284
Rotation matrix      70
Rote learning      32
Roulette wheel      118
RP      56
Saddle-crossing      98
Sample mean      220
Sample size      151 153
Sampling error      118
Samuel's checkers player      31n
Scalability      138
Scaling      93 111—113 118 122 167 169 195
Scaling factor      103
Scaling window      113 123 150 192 235
Scaling, exponential      111 192
Scaling, linear dynamic      111 150 169 192—193
Scaling, linear static      111
Scaling, logarithmic      111 192
Scaling, sigma truncation      112
Schema      124 133
Schema theorem      126 169 192
Schema, defining length      124 128
Schema, instance      124
Schema, order      124
Schema, survival probability      124
Schemata number of      128
Scoring polynomial      31n
Scripton      15
Search, heuristic      33
Secondary structure      12
Segment switch rate      116
Selection      34 51 63 64 68 112 157 163—195
Selection in Evolution Strategy      78—80
Selection in Evolutionary Programming      96—99
Selection in Genetic Algorithms      117—120
Selection, $(\mu+\lambda)$      78 98 174—179 182
Selection, $(\mu+\mu)$      91 98
Selection, $(\mu,100)$      185
Selection, $(\mu,\lambda)$      78 79 150 174—179 182 194 240
Selection, (1+1)      67
Selection, (15,100)      150
Selection, based on preservation      181
Selection, Boltzmann tournament      195n 280
Selection, control parameter      195
Selection, criterion      26
Selection, directed      164
Selection, disruptive      164
Selection, dynamic      181
Selection, elitist      129 133 157 182 200 202 232 241 247
Selection, experiments      184 193
Selection, exponential ranking      172
Selection, extinctive      131 181 183 249
Selection, extinctive, left      182
Selection, extinctive, right      182
Selection, hard      165
Selection, linear ranking      169—172 174 176 181 185 194 240 241
selection, natural      8 163—164
Selection, operator      63
Selection, preservative      133 183
Selection, probabilistic $(\mu+\mu)$      96
Selection, probability      117 165—183
selection, proportional      117 122 128 150 167—169 181 185 188 192 194 240 244 250
Selection, pure      182
Selection, soft      98 165
Selection, stabilizing      164
Selection, static      181
Selection, taxonomy      180—183
Selection, tournament      172—174 176 181 185 194 240 241 247 252
Selective pressure      165—195 243—255
Selective pressure, control of      179
Selective value      25
Self-adaptation      68 73 75 79 92 94 116 131 139 150 217 229 241 254
Self-affinity      147
Self-organization      25 34
Self-reproduction      24 27 61
Self-similarity      144
Sequence prediction      61
Shared memory      285n
Shekel's foxholes      138
Shifting balance theory      11
SIMD      238
Simulated annealing      195n
Skew-symmetry      40
Software, system architecture      277
Speciation      197
Speedup      216 219 228
sphere model      85 102 103 138 139 147 185 230
Sphere model with noise      157
Spinning wheel      118
splicing      15n
SPREAD      120
Stability      158
Stagnation      200 205
Stagnation probability      202 223
Standard code      110 113 221—232
Standard deviation      68 71 72 84 86 93 150 242 279 284
Start distribution      105
Start-state      52
State transition      53
Step function      139—142 188
Stirling numbers      76
Stochastic process      104
Stochastic process with discrete time      105
Stochastic Universal Sampling      120
Strategy parameter      68 69 73 241 254
Structure evolution      234
Subordinate-constructor      286
Subpopulation      107
1 2 3
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте