Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
McCormick S.F. — Multigrid Methods (Frontiers in Applied Mathematics)
McCormick S.F. — Multigrid Methods (Frontiers in Applied Mathematics)



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Multigrid Methods (Frontiers in Applied Mathematics)

Àâòîð: McCormick S.F.

ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1987

Êîëè÷åñòâî ñòðàíèö: 300

Äîáàâëåíà â êàòàëîã: 26.10.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
A posteriori error estimates      114—115
Accommodative scheme      27
Algebraic approximation property      143 156
Algebraic error reduction      5 30
Algebraic multigrid (AMG)      48 52—53 73—75
Algebraic multigrid (AMG) for scalar problems      97—119
Algebraic multigrid (AMG) for systems problems      119—127
Algebraic multigrid (AMG), coarse grid approximation in      85—97
Algebraic multigrid (AMG), convergence results in      78—82 85—97
Algebraic multigrid (AMG), smoothing property of      82—85
Algebraic multigrid (AMG), terminology and assumptions of      75—78
Algebraic smoothness      (see “Error algebraically
Aliasing      13
AMG      (see “Algebraic multigrid”)
Anisotropic coefficients      51 105 107 109
Approximation assumption      81
Approximation property      138 145
Artificial viscosity method      34
Beam — Warming algorithm      71
Black box multigrid method      48 74 119 127
Boundary-fitted coordinate transformation      32 51
BOXMG      48—49 50 52 53
c-points      99—100 101—103 104 108 116—117 126
C-variables      86 88 126
C/F-relaxation      105 114
Cauchy — Riemann equations      120 128
CFA      (see “Coarse grid finite
CGA      (see “Coarse grid Galerkin
Chebyshev acceleration      43
Coarse grid approximation      38—42 46 85—87
Coarse grid approximation, correction      21 22 25 41 43 46 63 65 66 69 76—81 104 107 109
Coarse grid approximation, finite difference approximations (CFA)      39—41 49
Coarse grid approximation, Galerkin approximations (CGA)      40—41 49
Coarse grid approximation, operators      76 78—79 103—104 124
Coarsening process      77 87—88 99 100—103 107 109 115-119
Coarsening process, strategy in AMG      96 101—103 115—119
Compressible flow      58
Condition number      11
Conjugate gradients      43 54 173
Conjugate residuals      43
Conservation laws      31
Conservative discretization      34
Convection-diffusion equation      51—53
Convergence factor      9 11 14 24 25 108 114 124 132
Convergence factor, asymptotic      105 122—123
Convergence factor, estimate of      150—153 166—167 169
Convergence factor, two-grid      173 176
Convergence factor, V-cycle      79—81 121 127
Convergence theorems      76 78—79
Convergence theory      142
Convergence theory in general case      153—161
Convergence theory in symmetric, positive definite case      143—150
Convergence theory, two-level      82 88—89
Convex interpolation      122
Correction scheme (CS)      41 68
CS      (see “Correction scheme”)
Cycling      21—23 24—30
Cycling, accommodative      27
Cycling, computational costs of      23 26 104
Cycling, fixed      27
Cycling, full multigrid (FMG)      22 25—30 69 161—162 171 175
Cycling, sawtooth      43 44 47 50 64 67 68
Cycling, two-grid      43 44
Cycling, V-cycIe      79—81 101 105 121 127
Cycling, W-cycle      21 22 64 160 173 174
Defect correction      34 49 54 58 71
Dirichlet boundary conditions      106 107 112 121—122 142 143 167—169 171
Discontinuous coefficients      38—39 49 50 52 53 74 105 107 109
Discontinuous solutions      60 70 74
Discretization error      3—4 8 25
Discretization(s)      61—63 119
Discretization(s) of elliptic variational problems      137—143
Discretization(s), central      34
Discretization(s), conservative      34—35
Elasticity problems      121—123 141
Elliptic partial differential equations      74—75
Elliptic systems      131 142
Elliptic variational problems      137—143
Energy inner product      2
Energy norm      4 79 131
Energy norm, convergence factors      150
Enthalpy damping      66
Entropy condition      60
Error, algebraic      5 30
Error, algebraically smooth      84—85 89 121
Error, discretization      3 3—4 25
Error, global      4 5 6 14 27
Error, oscillatory (high frequency)      11 16 17 19
Error, residual      27
Error, smooth (low frequency)      11 16 18 19 20 22 73 76 85 96 97 121
Error, truncation      3 4 6 27 30
Euclidean inner product      77 138
Euclidean norm      4 9 77
Euler equations      36 57—71
Euler equations of inviscid gas dynamics      32
Euler equations, linearized isenthalpic      70
Euler equations, solver      66
Euler equations, steady state      61
Euler equations, time-dependent      60
Euler time      36
Euler time, 5-point and 9—point      164—165
Euler time, finite difference      32—33 35 37 40 49 50 62 112 131 172
Euler time, finite element      75 109 121 131 135
Euler time, finite volume      34—35 37 39—41 46 47 62
Euler time, flux splitting      34—37 68
Euler time, Galerkin      40—42 49 69—71 77
Euler time, Lax — Wendroff      61
Euler time, Runge — Kutta-type      36
Euler time, uniform      119 127
Euler time, upwind difference      62—63 68
F-points      99—100 101—104 106 126
F-variables      86 88 120 126
FAS-cycle      (see “Full approximation scheme”)
Finite difference discretization      32—33 35 37 40 50 62 112 131 172
Finite element discretizations      75 109 121 131 135
Finite volume discretization      34—35 37 39—41 46—47 62
Fixed scheme      27 (see also “Cycling”)
Flux splitting      34 35—37 68
FMG      (see “Cycling full
Fourier mode (smoothing) analysis      11 13 24—25 44 45 131 176
Fourier mode (smoothing) analysis, estimates      162—170
Full approximation scheme (FAS)      41 64
Full weighting      17—18 38
Galerkin approximations      40—41 42 49 69—71 77
Gauss — Seidel method (relaxation)      7—8 27—29 42 63 70 77 82 83 84 105 118 120—121 126 147 169
Gauss — Seidel method (relaxation) forward      42
Gauss — Seidel method (relaxation), alternating line      107
Gauss — Seidel method (relaxation), backward      42
Gauss — Seidel method (relaxation), block      45 49 50 52 128
Gauss — Seidel method (relaxation), line      70
Gauss — Seidel method (relaxation), point      49 50
Gauss — Seidel method (relaxation), red-black      27—29 42 149
Gauss — Seidel method (relaxation), symmetric      47 70
Gauss — Seidel method (relaxation), two-block      149
Grid complexity      103 108
GRIDPACK      48 49
Grids, nonrectangular      32 50 62 74 109—112
Grids, nonstaggered      63 124
Grids, nonuniform      36 39 74 109—112
Grids, size      54 73 74 110
h-Ellipticity measure      169—170
Half weighting      38
Helmholtz equations      50 94
Higher order systems      131
Hilbert scale of spaces      136—137
Hyperbolic equations      32 53—54
Incomplete block LU-factorization (IBLU)      42 50
Incomplete factorization      42 43 45 49—50
Incomplete line LU-factorization (ILLU)      42
Incomplete LU-factorization (ILU)      42 50
Injection      17 137
Interpolation      (see also “Prolongation”)
Interpolation formulas in AMG      90—91 93 102—105 117—119 120 126
Interpolation of eigenvectors      94 118—119
Interpolation, accuracy of      115
Interpolation, along direct connections      91—92
Interpolation, convex      116—117 122
Interpolation, general      92—93
Interpolation, linear      37 103 118
Interpolation, long-range      92 116
Interpolation, one-sided      95—96 101
Interpolation, piecewise multilinear      14
Interpolation, standard      87
Inviscid compressible flow      57
Irrotational flow      58
Isoparametric finite elements      171
Jacobi method (relaxation)      7—14 18 24 25 45 49 51 84
K-matrix      33—34 35 50
Kaczmarz method (relaxation)      42 50 128 174
Laplace equation      56 123 163 166
Laplace operator      106 107 108 109
Laplace operator, skewed      74
Lax — Wendroff time stepping      36 61 64—66
Lexicographic order      6
Linear interpolation      49
Lipschitz boundary      140 143
Local mode analysis      169—170
M-matrix      33 112 123
M-matrix, application of      90—91
M-matrix, symmetric      78 83—85 93 98 99 119
M-matrix, weakly diagonally dominant      91 92 94—95
MG00      48—49 50 52—53
MGAZ      52
MGD4      53
MGD5      50 52—53
MGDI      50 52—53
MGHZ      52
Navier — Stokes equations      57 58—60
Nested iteration      16—19 20 22
Neumann boundary conditions      112 143 171
Newton method      36—37 49 53 68—69 123 129
Nonconforming finite element method      171
Nonlinear basis functions      171
Nonlinear problems      32 53—54 64 123—124
Nonsymmetric operators      105 112—114
Nonuniform grids      36 39
Norm      2 3—5 9 “Euclidean
Norm of residual and global errors      27—28
Norm, discrete      132—134
Operator complexity      103 123
P-smoothing factor      45
padding      32 50
Parallelization      65—66 84
Periodic boundary conditions      163—164 166
Plane-stress problem      121
PLTMG      48 49
Poisson equations      24 26 50 54
Poisson solver      48
Poisson’s ratio      121
Prandtl numbers      59
Prolongation      37—39 47—48 49 54
Prolongation, designing      171—172
Prolongation, matrix-dependent      49 50 53
R-smoothing factors      45 47
Rayleigh quotient      118—119
Re-entrant comer      110 142
Red-black relaxation      27—29 42 149
Regularity      140—142
Relaxation      7—19 70
Relaxation, acceleration of      43
Relaxation, block      149—150
Relaxation, C/F      105 114
Relaxation, choosing      107
Relaxation, Jacobi      (see “Jacobi method (relaxation)”)
Relaxation, Kaczmarz      (see Kaczmarz method (relaxation)”)
Relaxation, local      129
Relaxation, red-black      27—29 42 149
Relaxation, Richardson      (see “Richardson method (relaxation)”)
Relaxation, switched evolution (SER)      69
Relaxation, ZEBRA      42 52 176
Residual equation      19 20
Residual transfer      (see “Restriction”)
Restriction      17—18 37—39 47—48 54 76 105 “Injection” “Full
Reynolds numbers      59—60
Richardson method (relaxation)      146 166—167 174
Runge — Kutta time stepping method      67
Runge — Kutta-type discretization      36
Semidiscretization      66—68
Shallow water equations      32
Smooth boundaries      142
Smooth coefficients      52
Smooth error      11 16 18 19 20 45 73 85 96 97 121
Smooth error, reduction of      22
Smooth error, vectors      76
Smoothers      (see “Relaxation”)
Smoothing analysis      (see “Fourier mode (smoothing) analysis”)
Smoothing assumption      81—85
Smoothing factors      24 70 143 146—148 149 156
Smoothing factors for block Jacobi and block Gauss — Seidel system      172
Smoothing factors, optimal      166
Smoothing methods      (see “Relaxation”)
Smoothing property      14 81—85
Smoothness, algebraic      84—85 99
Sobolev spaces      3 141 142
Software      48—50 (see also “BOXMG” “BOXMG” “BOXMG” “GRIDPACK” “MGAZ” “MGD1” “BOXMG” “MGD4” “BOXMG” “MGD5” “BOXMG” “MGHZ” “MG00” “BOXMG” “PLTMG”)
Spectral analysis      (see Fourier mode (smoothing) analysis)
Spectral radius      4
Stationary linear iterative methods      8 18 144
Steepest descent method      173
Steger — Warming scheme      68
Stencils      15 106 107
Stencils for restriction operators      17—18
Stencils, 5-point      6
Stencils, 9-point symmetric      163—164
Stencils, finite difference      33
Stencils, symmetric      176
Stokes equations      57 58 128
Strong connections      114 116—117
Subsonic flow      53 70
Supersonic flow      65 70
Switched evolution relaxation (SER)      69
Symmetric operators      3—4 38 77—78 83—85 93 98—99 114 119—120 132—133 143-150 159
Time-dependent problems      36 57—60 64—69
Transonic flow      53 58 65
Truncation, error      3 4 6 27 30
Truncation, level of      26
Upwind differencing      37
V-cycle      (see “Cycling” “W-cycle”)
Variational multigrid theory      131 170
Variational multigrid theory, algebraic assumption motivation and verification in      136—143
Variational multigrid theory, convergence theory and      143—150 153—161
Variational multigrid theory, estimate of convergence factors in      150—153
Variational multigrid theory, Fourier analysis estimates and      162—170
Variational multigrid theory, full multigrid and      161—162
Variational multigrid theory, notation assumptions in      132—135
Variational multigrid theory, problems in      171—177
Vectorization      42 43 48 50 71 84
viscosity      58 59
VLSI design problem      123—124
W-cycle      (see “Cycling” “W-cycle”)
Work units (WU)      23 29
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå