|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Morrison T.M. — Functional Analysis: An Introduction to Banach Space Theory |
|
|
Ïðåäìåòíûé óêàçàòåëü |
32
and block basic sequences 243—245
and compact sets 189
and matrix maps 96—98
and w.u.c.-series 283—284 285
not complemented in 179 275
not complemented in and projections 159—161
not complemented in in Hilbert space or 162—163
not complemented in in spaces with basis 242—243
not complemented in , finite-dimensional subspaces 161
, basis of 233
, basis of, has no boundedly complete basis 301
, basis of, nonslirinking basis for 290
, basis of, shrinking 289
, compact operators on 183
, complemented in separable spaces 163
, complemented subspaces isomorphic to in 245—246
, contained as subspace 283—285
, dense subspace 42
, dual 44—45
, Dunford — Pettis Property 306
, not a dual space 149
, not complemented in 179 275
, one operator ideal on 184
, separable 34 71
, strictly singular operators on 202
, unit ball not weakly compact 126—127
, weakly compactly generated 176
, when all operators into are weakly compact 177—179
71 101 102—104
as dual of 44—45
as dual of c 48—49
, boundedly complete basis 301
, coincidence of weak and norm sequential convergence in 276
, compact and weakly compact operators into 182—183
, complemented in bidual 276
, contained in spaces with Schur property 259—260
, dual 45 46
, has Dunford — Pettis Property 305—306
, is weakly sequentially complete 276—277
, Rosenthal's criteria for selecting basic sequence equivalent to basis 259—267
, separable spaces are quotients of, 103—104
174 179
is weakly compactly generated 176
, continuity of linear maps into 103
, dense subspace of 53
, dual of 54
, has Dunford — Pettis Property 306
, has no boundedly complete basis 301
, not a dual space 149
, unconditionally convergent series in 280—282
, when continuous operators on are weakly compact 181
29—32 36 104 see
and compact sets 189
, basis for 233
, basis for, block basic sequences in 243—246
, basis for, boundedly complete 301
, basis for, shrinking 289—290
, compact operators between 254—255
, dense subspace 42
, dual 46—48
, isomorphic complemented subspaces in 245—246
, one operator ideal on 184
, separablility 33—34
, strictly singular operators on 202
, total incomparability 255 256
35—36 72 104
, compact sets in 189—190
, dense subspace of 42
, dual of 54—56
, Haar system for 234—237
, Haar system for, is boundedly complete 301
, Haar system for, is shrinking 290
, is uniformly convex 336—337
, is uniformly smooth 337
32—33 71 87—88 101 174
and Grothendieck spaces 175
and matrix maps 96—98
as dual of 45—46
, not complemented in 179 275
, dual 50
, lifting property of 82—83
, noncompact operator on with compact square 196
, nonseparability of 34
, representation of continuous linear operators on 274—275
, separable subspaces not complemented 275
36
, dense subspace of 42
, has Dunford — Pettis property 306
, pointwise limit of weakly compact operators in is weakly compact 179
, weakly compact operators on 181
105
151—152
25—26 32 33
as -space 26
as dual of -space 59—60
50—51
, dense subspace 50
20—21 26 57
and separability 157—158
and Stone — Weierstrass Theorem 151—153
, dual 59—60
, extreme points in dual 148—149
, has Dunford — Pettls Property 305
, weakly compact operators on 180—181 189 310
, weakly compact sets 189
, when a Grothendieck space 175
, when weakly sequentially complete 157
19—20 26 82 104
and compact operators 185—186 189
, all separable spaces imbed in 142
, dense subspace, 42
, no boundedly complete basis 301
, Schauder basis for 233—234
, separable 33
26—27 33
57—59
51-54
as dual of 54
, realized as 53
-topology 119—121
-topology, dual with respect to 119—120
50—51 270
as dual of 50—51
Absolutely summable series 27
Absorbing set(s) (radial at ) 109 110—111
Adjoint operator(s) 164 165—170
Adjoint operator(s) of strictly singular and cosingular operators 209—210
Adjoint operator(s), basic properties 166
Adjoint operator(s), closed and injective range implies operator surjective 168—169
Adjoint operator(s), closed range characterization 166—170
Adjoint operator(s), defining an embedding of into 165
Adjoint operator(s), weak*-continuity of 166
Affine function(s) 215
Alaoglu, L. 124 125 see
Amir — Lindenstrauss Theorem 177 216
Amir, D. 176 219 see
Anderson, R.D. 218
Ando.T. 175
Approximation problem 184 219 220
Approximation property 218 321
Arzela — Ascoli theorem 182 186
Assent of an operator 192—193
Baire category theorem 76 78 124 221
Baire measure(s) 57
Baire sets 57
Banach Closed Graph Theorem see "Closed Graph Theorem"
Banach Homomorphism Theorem see "Open-Mapping Theorem"
Banach Isomorphism Theorem 63 80—81 222 226 291
Banach limit(s) 87—94
| Banach space(s) 18
Banach space(s) with Frechet differentiable norm 328—330
Banach space(s) with Gateaux differentiable norm 323—325
Banach space(s) with uniformly Frechet differentiable norm 330—333
Banach space(s), always contain subspace with basis 252
Banach space(s), always weak* dense in bidual 127—128
Banach space(s), criteria for containing subspace isomorphic to 284—285
Banach space(s), direct sums of 211—213
Banach space(s), grothendieck space 175 177 179 184 309
Banach space(s), nonreflexivity characterization 317—319
Banach space(s), norm achieving functionals on unit ball are dense 313—314
Banach space(s), reflexive exactly when closed subspaces with basis are 297
Banach space(s), smooth 323—325
Banach space(s), somewhat reflexive 257
Banach space(s), strictly convex (rotund) 325—328
Banach space(s), subreflexive 313
Banach space(s), uniformly convex 330—336
Banach space(s), uniformly smooth 330—336
Banach space(s), very smooth 330
Banach space(s), weak* sequential closure is norm closed in bidual 128—129
Banach space(s), weakly compactly generated 176
Banach space(s), weakly complete implies finite-dimensional 157
Banach space(s), weakly conditionally compact 254
Banach space(s), when isomorphic to Hilbert space 60—62
Banach — Alaoglu theorem 125 126 127 133 137 140 142 144 148 149 150 153 168 171 173 215 320 324
Banach — Alaoglu Theorem with respect to dual spaces 126
Banach — Mazur theorem 142 179 251 252 256 301
Banach — Steinhaus theorem 63 76—78 82 94 95 98 101 103 105 106 130 144 159 178 222 224 227 228 230 294 295 300
Banach's theorem 168 169 252 297
Banach's Weak Basis Theorem 222 229 230 239 296
Banach, Stefan 2 27 63 64 75 76 77 78 81 87 88 89 90 92 95 124 125 127 140 166 169 219 220 245 252 see "Banach "Banach "Banach "Banach's "Banach "Hahn
Bartle — Dunford — Schwartz Theorem 180 181
Bartle, R.G. 180 see
Basic selection principles see "Selection principles"
Basic sequence(s) 227—229
Basic sequence(s) and reflexivity 300—301
Basic sequence(s) in dual spaces 232
Basic sequence(s) in weakly null sequences 251—252
Basic sequence(s), Bessaga — Pelczynski criteria for selecting basic subsequence 249—251
Basic sequence(s), block 243—245
Basic sequence(s), equivalence of 240
Basic sequence(s), existence of with constant near one 252—252 253
Basic sequence(s), in weakly convergent sequences are bounded away from 251—252
Basic sequence(s), Mazur's criteria for selecting basic subsequence 247—249
Basic sequence(s), Rosenthal criteria for selecting basic subsequences and 259—267
Basic sequence(s), when equivalent to basis 241—242
Basic sequence(s), when equivalent to unit vector basis of 244
Basis constant 232
Basis constant, existence of basic sequences with constant near one 252—253
Basis problem 219
Basis(es) 217 see "Shrinking "Boundedly
Basis(es) and complementation 242—243
Basis(es) and dense subsets 242
Basis(es) and subsequences 228—229
Basis(es) for James' space 237—238
Basis(es) in reflexive spaces 286 297
Basis(es), associated coefficient functionals 220 225—226
Basis(es), Banach spaces always have subspace with 252
Basis(es), boundedly complete 294
Basis(es), characterization of for biorthogonal system 228—229
Basis(es), equivalence of weak and Schauder 222—222 230
Basis(es), equivalent bases 238—242
Basis(es), Haar system for 234—237
Basis(es), Hamel basis uncountable 221—222
Basis(es), internal characterization of 230—232
Basis(es), monotone 232 234
Basis(es), perturbation of 241—242
Basis(es), Schauder 220
Basis(es), Schauder system in C([0,1]) 233—234
Basis(es), shrinking 286
Basis(es), weak 220
Basis(es), weak*-Schauder 297 297
Bessaga — Pelczynski Selection Principle 220 249—251 252 254 257 269 282 285 304
Bessaga, C. 218 220 224 242 247 285 301 see
Best approximations 149—151
Bidual 72
Biorthogonal system(s) 226—229
Biorthogonal system(s) and expansion operators 226
Biorthogonal system(s), when yields basis or basic sequence 228 229
Bishop — Phelps theorem 270 310 311 312 313—314 330
Bishop, E. 310 313 322 see
Block basic sequence(s) 243—246
Block basic sequence(s) and shrinking bases 288—289
Block basic sequence(s) in and 243—245
Bochner, S. 180 181
Bohnenblust, H.F. 83
Bounded approximation property 218 219—220
Bounded multiplier Cauchy (convergent) series 277 see
Boundedly complete basis(es) 294
Boundedly complete basis(es) and shrinking yields reflexivity 297—299
Boundedly complete basis(es), examples 301
Boundedly complete basis(es), existence of guarantees being dual space 295—296
Boundedly complete basis(es), relationship with shrinking basis 294—295
Bourbaki, N. 127
Brooks, J.K. 77
C 32 89 100
c and matrix maps 96—99
c, dual 48—49
c, not isometrically isomorphic to 49
c, separable 34 71
Canonical injection j see "Natural injection"
Cantor set 140—142 338—339
Cartesian produces(s) see "Produces"
Choquet, G. 150
Circled (balanced) set(s) 108 109—111
Circled hull 109
Clarkson, J.A. 270 334 336
Closed graph theorem 63 81—82 103 105 106 161 165 305
Coefficient functionals 220
Collins, H.S. 130
Compact operator(s) 181 182—186
Compact operator(s) and C([0,1]) 185—186 189
Compact operator(s) and the Riesz — Schauder theory 186—201
Compact operator(s) as operator ideal 183
Compact operator(s) on finite-dimensional spaces 182
Compact operator(s) on weakly sequentially compact spaces 254
Compact operator(s), between -spaces 254—255
Compact operator(s), exactly when adjoint compact 182
Compact operator(s), exactly when map bounded nets to convergent nets 184
Compact operator(s), is strictly cosingular 206
Compact operator(s), matrix form on 184—185
Compact operator(s), pointwise limit of on Grothendieck spaces 184
Compact operator(s), properties of 184—186
Compact operator(s), uniform limit of 184
Compactness and extreme points 146—148
Compactness, examples 189—190
Compactness, sequential, and conditionally countable 129 130—136
Comparable norms see "Norm(s)"
Complemented subspace(s) 161
Complemented subspace(s) in and 243—246
Complemented subspace(s), is in any separable space 163
Complemented subspaces problem 161
Completeness 18
Completeness, exactly when absolutely summable sequences are summable 27—28
Continuity of addition and scalar multiplication 21—22
Continuity, weak and weak* 158—159
Convex cone 311 312—313
Convex conjugates 29
Convex hull 108—109
Convex set(s) 108 109—113
Convex set(s) and extreme points 144—146
Convex set(s) in locally convex spaces 121
Convex set(s), coincidence of weak and norm closure 122
Convex set(s), norm achieving functionals on 313—319
Convex set(s), support points and functionals for 311—313
Convex set(s), when weak* closed in dual 142—143
Conway, J.B. 87
Coordinate (projection) maps 5
Dabokov, R. 306
Daniell integral 11—16 58
|
|
|
Ðåêëàìà |
|
|
|