Авторизация
Поиск по указателям
Neusel M.D. — Invariant Theory of Finite Groups
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Invariant Theory of Finite Groups
Автор: Neusel M.D.
Аннотация: The questions that have been at the center of invariant theory since the 19th century have revolved around the following themes: finiteness, computation, and special classes of invariants. This book begins with a survey of many concrete examples chosen from these themes in the algebraic, homological, and combinatorial context. In further chapters, the authors pick one or the other of these questions as a departure point and present the known answers, open problems, and methods and tools needed to obtain these answers. Chapter 2 deals with algebraic finiteness. Chapter 3 deals with combinatorial finiteness. Chapter 4 presents Noetherian finiteness. Chapter 5 addresses homological finiteness. Chapter 6 presents special classes of invariants, which deal with modular invariant theory and its particular problems and features. Chapter 7 collects results for special classes of invariants and coinvariants such as (pseudo) reflection groups and representations of low degree. If the ground field is finite, additional problems appear and are compensated for in part by the emergence of new tools. One of these is the Steenrod algebra, which the authors introduce in Chapter 8 to solve the inverse invariant theory problem, around which the authors have organized the last three chapters. The book contains numerous examples to illustrate the theory, often of more than passing interest, and an appendix on commutative graded algebra, which provides some of the required basic background. There is an extensive reference list to provide the reader with orientation to the vast literature.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2001
Количество страниц: 371
Добавлена в каталог: 28.11.2010
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
22
11
11
10
27 75
294
230
101
78
79
-relative invariant 195
20
-module 266
174
41
101
266
266
3
3
57
60
137
209
16
74
-relative invariants 6
189
248
70
3
2
4
8
3
6
48
2
228
247
61
21 152
247
270
289
21
230
249
248
247
105
248
228 260 275
284
-functors 284
157
285
284
285
3
-construction 260 266
260
263
243
243
120
318
137
285
248
48
269
48
58
58
168
268
328
79
4
82
80
226
289
156
228
141
13
320
318
15
33
230
57
158
11
11
231
-generalized Jacobian determinant 245
-generalized Jacobian matrix 267
-inseparable closure 244
-inseparably closed 244
-invariant ideal 259 260 275
-invariant ideals 23
-invariant Krull relations 268
-invariant Lasker — Noether theorem 260
-primary decomposition 260
228
4
4
116
41
33
249
89
61
2-dimensional integer representation 222
3-dimensional integer representation 226
A(n,X,G) 62
Abelian groups 193
Absolutely flat 285
Adem — Wu relations 231 234
Admissible monomial 234
Affine variety 151 168 268
Algebra of coinvariants 8 10
Algebra of invariants 4
Algebraic closure 325
Algebraic finiteness 12 29
Algebraically closed 266
Alternating group 17 27 75 209 211
Alternating polynomials 5
Arrangement of hyperplanes 160
Artin — Rees lemma 249
Associated partition 69
Associated prime 137 328
Associated prime of a module 137 328
Atiyah — Bott fixed-point theorem 50
Augmentation homomorphism 9
Augmentation ideal 8 317
Augmentations homomorphism 317
Auslander — Buchsbaum equality 19 251
Averaging map 47
Averaging operator 151
Bar construction 174 298
Basic monomials 234
Be warned 318
Bigrade 174
Bigraded 316
Bigrading 116
Bireflections 146 308
Block Chern classes 98
BLOCKS 89
Borel group 216
Bottom orbit Chern class 79
Bounded below 45
Brauer lift 49
Brown — Gitler module 248
Bullett — Macdonald identity 231
Burnside's Lemma 60
Cartan formulae 229
Category of graded A-modules 118
Cauchy — Frobenius proposition 60
Center 209
Central series 210
CHARACTER 146
Character field 187
Character theory 194
Characteristic 0 lift 49
Chern class, top 79
Chevalley, C. 190
Class equation 57
Class of nilpotency 210
Classical groups 216
Classical invariant theory 2
Codimension 129 139 247
Codimension of a module 139
Codimension of an algebra 139
Cofactor matrix 126
Cohen — Macaulay 19 21 25 146 193 213 326
Cohen — Macaulay algebra 278
Cohen — Macaulay algebras 115
Cohen — Macaulay property 129
Cohen — Seidenberg relations 268 320 322
Coherent 32
Cohomological finiteness 18
Cohomology of a group with coefficients in a Koszul complex 174
Cohomology of cyclic group 177
Coinvariant 177
Coinvariants 8 9 32 194
Coinvariants of pseudoreflection groups 194
Combinatorial finiteness 14 45
Complete flag 110 164
Complete intersection 20 146
Complete intersections and stabilizer subgroups 307
Complex pseudoreflection groups 187
Component 316
Component of in 285
Component of 284
Composite Functor Theorem 174
Concentrated in degree 0 318
Configuration of hyperplanes 103 267 270
Configuration of lines 103
Congruence semigroup lemma 206
Connected graded algebra 317
Conormal sequence 304
Contraction 268
Contravariant variable 174
Converges to 175
Covariant variable 174
Coxeter group 17 212
Coxeter groups 187
Coxeter, H.S.M. 187
Cramer's rule 126
Criterion of D. Bourguiba and S. Zarati 22
Cyclic group 42 65 207
Cyclotomic algebra 48
Cyclotomic integers 48
D(M) 69
Dade bases 99
Dade basis 31 100 173
Dade's condition 100
Dade's construction 18
Dade, E. 18
Dedekind's Lemma 34
Defined over 48
deg(-) 105
deg(A|C) 203
Degree 203
Degree bounds 310
Degree of a module 105
Degree of a monomial 3
Degree of a ring 105
Degree Theorem 105
Degree-zero component 285 294
Delta function basis 79
Delta functions 79
Depth 18 19
Depth and stabilizer subgroups 307
Depth conjecture 21 247
Depth of an algebra 129
Derivation Lemma 327
Di-cyclic group 131 216
Diagonalizable 195
Dickson algebra 21 139 152 225 255 271
Dickson algebra of degree 2 80
Dickson polynomial 21 213
Dickson polynomial, top 155
Dickson polynomials 105 153 173 225
Dickson, L.E. 156
Differential 116
Dihedral group 50 82 108 127 218 219
Dihedral group of order 2p 11
Dimension, global 118
Direction 156
Direction of a pseudoreflection 186
Direction of a transvection 156
Discriminant 5 35
Divided polynomial algebra 178
Dominance ordering 70
Double complex 174
Doubly polarized elementary symmetric polynomials 91
Eagon — Hochster theorem 130
Eilenberg — Moore 174
Eilenberg, S. 121
Elementary matrix 110
Embedding property 242
Embedding theorem 243 272 291
Essential monomorphism 249
Euler characteristic 178
Euler class 104 155 213 230 270 273
Euler's formula 119 127
Exactness of 284
Example 230
Example, 5 75
Example, 149
Example, 219
Example, 50 108
Example, 218
Example, 11 218 219
Example, 217
Example, 82 127
Example, 218 219
Example, 172
Example, 216
Example, 191
Example, 262
Example, 309
Example, 213 218
Example, 309
Example, 213
Example, 309
Example, 309
Example, 215
Example, 309
Example, 215
Example, 309
Example, 213
Example, 276
Example, 23 26 32 39 43 59 133 222
Example, 222 223
Реклама