Авторизация
Поиск по указателям
Neusel M.D. — Invariant Theory of Finite Groups
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Invariant Theory of Finite Groups
Автор: Neusel M.D.
Аннотация: The questions that have been at the center of invariant theory since the 19th century have revolved around the following themes: finiteness, computation, and special classes of invariants. This book begins with a survey of many concrete examples chosen from these themes in the algebraic, homological, and combinatorial context. In further chapters, the authors pick one or the other of these questions as a departure point and present the known answers, open problems, and methods and tools needed to obtain these answers. Chapter 2 deals with algebraic finiteness. Chapter 3 deals with combinatorial finiteness. Chapter 4 presents Noetherian finiteness. Chapter 5 addresses homological finiteness. Chapter 6 presents special classes of invariants, which deal with modular invariant theory and its particular problems and features. Chapter 7 collects results for special classes of invariants and coinvariants such as (pseudo) reflection groups and representations of low degree. If the ground field is finite, additional problems appear and are compensated for in part by the emergence of new tools. One of these is the Steenrod algebra, which the authors introduce in Chapter 8 to solve the inverse invariant theory problem, around which the authors have organized the last three chapters. The book contains numerous examples to illustrate the theory, often of more than passing interest, and an appendix on commutative graded algebra, which provides some of the required basic background. There is an extensive reference list to provide the reader with orientation to the vast literature.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2001
Количество страниц: 371
Добавлена в каталог: 28.11.2010
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Example, 56
Example, 38 64 223
Example, 7 39 43 147 223
Example, 224
Example, 226
Example, 46 50 213 216
Example, 208
Example, 65 161 173
Example, 164
Example, 226
Example, 80
Example, 80 213
Example, 230
Example, 230
Example, 213
Example, 104
Example, 273
Example, 213
Example, 215
Example, 215
Example, 110
Example, 216
Example, 54
Example, 131
Example, 82 94 98 216 274
Example, 173
Example, 9 225
Example, 5 35
Example, alternating group 5
Example, dihedral group 82
Example, Frobenius group 280
Example, orthogonal groups 308
Example, special orthogonal groups 308
Example, Stong's 164
Example, symmetric group 5
Examples, 207
Excess 237
Exponent sequence 69
Extended ideal 8
Extension 268
Exterior algebra 116
E[V] 116
Factorial 25
Faithful 5
Feshbach's transfer theorem 40 42 169 268
Feshbach, M. 171
Field of fractions 25 26 105 106 107 242
Fine Chern classes 91 92
Fine orbit Chern classes 16 98
Finite extension 31
Finite length 118
Finite p-group 102 103
Finite symplectic group 276
Finite type 45 316
Finite, noetherian 14
Finiteness, algebraic 12
Finiteness, combinatorial 14
Finiteness, homological 13
First Fundamental Theorem 25
First Main Theorem of Invariant Theory 86
Fixed point freely 11
Fixed-point set 173
Flag 164
Flag of subspaces 110
Flat 320
Forms 2
Forms, as functions 3
Fractal of the Dickson algebra 270 278
Fractal property 155 271
Fractal property of the Dickson algebra 271
Fractal property of the Steenrod algebra 271
Free R-module on a set 57
Freyd's adjoint functor theorem 284
Frobenius homomorphism 21 227
Frobenius map 271
Frobenius subgroup 280
Fundamental class 124 194
Fundamental theorems 24
G-invariant configuration 103
G-set 57
G-stable 6
Galois embedding theorem 245
Galois field 2
Generalized Landweber — Stong conjecture 254
Generalized quaternion group 131 173
Generalized quaternion groups 217
Global dimension 118
Global dimension d 118
Goebel's bound 74 149
Goebel's Theorem 46 69 73
Goebel, M. 18
Going down 323
Going up 323
Good primes 187
Gorenstein 54 213
Gorenstein ring 146
Gorenstein rings 143
Graded algebra 316
Graded algebra of maps 287
Graded algebra of polynomial functions 2
Graded complete intersection 68
Graded field 105
Graded field of fractions 105 317
Graded module 317
Graded vector space 316
Grading, negative 248
Gradings 315
Grassmann variety 269
Group action 1
Group algebra 6
Group of odd order 27
Height 42
Herbrand's lemma 178
Higher center 209
Higher-order differential operator 229
Hilbert function 14
Hilbert ideal 9 167
Hilbert — Serre theorem 66 67
Hilbert's basis theorem 1 30
Hilbert's Nullstellensatz 1 326
Hilbert's syzygy theorem 1 118
hom-codim(-) 139
hom-dim-(-) 118
Homological algebra 13
Homological codimension 19 129 173
Homological degree 116
Homological dimension 118
Homological finiteness 13
Homological properties 278
Hopf algebra 231
Hyperplane 156 186
Hyperplane of a pseudoreflection 186
Hyperplane of a transvection 156
Hypersurface 146 310
Icosahedral group 54 191 220
Ideal of stable invariants 11
Ideal, maximal 322
Ideal, primary 322
Idempotent 294
Ifp-basis 102
Ifp-dimensions 102
Imbedding property 242
Imbedding theorem 245 270 278 291
Indecomposable elements 318
INDEX 33
Index sequence 234
Injective hull 247 248 251
Integer representation 221
Integral extension 31 320
Integral extensions and the functor T 292
Integrally closed 25
Internal degree 117 174
Intertwining action 287
Invariant ideal 23 259 260
Invariant ideals 23
Invariant prime ideal spectrum 266
Invariants of in characteristic p 160
inverse invariant theory problem 22
Irreducible ideal 143
Irreducible representation 75
Irredundant primary decomposition 322
Isolated prime 322
Isometries of a square 82
Isometries of the square 127
Isotropy group 35 57 60
Isotropy subgroup 75 308
Isotypic component 6
Iterated fixed-point filtration 101
Iterated fixed-point length 101
Iterated fixed-point set 101
Ith polarized Chern class 87
Ith polarized elementary symmetric polynomial 87
Jacobian determinant 126 194
Jordan block 161
Jordan canonical form 160
Kaehler differentials 303
Koszul complex 114 116 117 173 250
Koszul complex, modified 178
Koszul's Theorem 117
Krull dimension 25 42 115 324
Krull dimension and the functor 292 297
Krull relations 268 320 322
Kth doubly polarized Chern class 91
Lam's -construction 260
Landweber — Stong conjecture 246 247 283
Landweber's Theorem 270
Landweber, P.S. 158
Lannes — Zarati structure theorem 249
Lannes's -functor 284
Lasker — Noether Theorem 1 268 322
Leibniz rule 35
Length 234
Local cohomology 176
Local cohomology spectral sequence 176
Lying over 323
Lying-over 271
Macaulay's theorem 278
Maximal 322
Maximal ideal 322
Maximal regular sequence 129
Minimal polynomial 203
Minimal resolution 121
MOD/A 118
Modified Koszul complex 178
Modular case 2
Modular invariant theory 151
Module of indecomposable elements 120
Molien's theorem 46 49
moment 234
Monic polynomial 31
Monomial 3
Monomial basis 59
Moore, J.C. 315
Morphism of degree d 316
Multiindex 3
Multiplicity 6 63
Multiplicity function 63
Multipolarized Chern classes 91 92
Multipolarized elementary symmetric polynomials 92
Multiset 63
n-fold Cartesian product 61
Nakajima — Stong Theorem 109
Nakajima's Theorem 307
Nakajima, H. 159 164
Nakayama's lemma 318
Negatively graded 248
Newton's formula 81
Nilpotent group 210
Nilpotent groups 23
Nilradical 255
Noether map 29 85
Noether normalization 324
Noether Normalization Theorem 14 323
Noether problem 26
Noether's bound 17 36 149
Noether's finiteness theorem 31
Noetherian 25
Noetherian finiteness 14
Noetherian module 30
Noetherian ring 30
Noetherianess 290 291 294
Nonassociates 27
Nondiagonalizable pseudoreflection 156
Nonmodular case 2
Nonnegatively graded 45
Norm 79
Normal extension 323
Octahedral group 220
Optimal system of parameters 18
Orbit 1 57
Orbit Chern classes 16 78 255
Orbit polynomial 78
Orbit sum 58
Orbit sums 58
Order of the pole 69
Orthogonal group 308 309
P(M,t) 45
p-group 27 210
p-groups 23 152 160 193
p-Sylow subgroup of 110
p-Sylow subgroup of 110
Palindromic polynomial 145
Parabolic Group 216
Parameter ideal 143
Permutation invariants 69
Permutation representation 8 17 23 46 57 149
Pigeonhole Principle 207
Poincar series 46
Poincar'e duality algebra 194
Poincar'e series 67
Poincare duality algebra 124 126
Poincare series 14 45 57 59 66
Pointwise stabilizer 20 146 192 283 288 289 307
Polar axis 54 191 192
Polarized Chern classes 213
Polarized elementary symmetric polynomials 87
Poles 54
Polynomial algebra 2 146 164
Polynomial algebra problem 19
Polynomial algebras and the -functor 302
Polynomial functions 2 4
Positively graded 45
Pre-Euler class 104 213 267
Primary decomposition 320
Primary ideal 322
Prime avoidance lemma 320
Prime field 49
Prime Filtration Lemma 330
Prime ideal spectrum 259
Primitive derivation 244
Principal ideal 35
Proj(-) 259
proj-dim_(-) 118
Projective 10 320
Projective dimension 18 25 118
Projective resolution 13 174
Pseudo-optimal 18
Pseudoreflection 51 124 186
Pseudoreflection group 186 193
Pseudoreflection groups 186 194
Реклама