Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Morrow J., Kodaira K. — Complex Manifolds
Morrow J., Kodaira K. — Complex Manifolds



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Complex Manifolds

Авторы: Morrow J., Kodaira K.

Аннотация:

This volume serves as an introduction to the Kodaira-Spencer theory of deformations of complex structures. Based on notes taken by James Morrow from lectures given by Kunihiko Kodaira at Stanford University in 1965-1966, the book gives the original proof of the Kodaira embedding theorem, showing that the restricted class of Kähler manifolds called Hodge manifolds is algebraic. Included are the semicontinuity theorems and the local completeness theorem of Kuranishi. Readers are assumed to know some algebraic topology. Complete references are given for the results that are used from elliptic partial differential equations. The book is suitable for graduate students and researchers interested in abstract complex manifolds.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1971

Количество страниц: 194

Добавлена в каталог: 28.10.2010

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Algebraic, projective      11
Blowing up      17
Bounded domain      144
Bundle, vector      62
Bundle, vector, conjugate      65
Bundle, vector, dual      65
Bundle, vector, quotient      66
Bundle, vector, section      66
Bundle, vector, sub      66
Bundle, vector, tensor product      65
Bundle, vector, Whitney sum      65
Cauchy — Riemann equations      3
Chern class      64 127
Completeness      55
Completeness, theorem of      56
Conjugate tangent bundle      66
Coordinate, local complex      7
Covariant differentiation      106—109
Curvature, Ricci      118
Curvature, tensor      117
de Rham's theorem      72
Deformation      19
Deformation, infinitesimal      36—39
Deformation, small      19
Derivative, exterior      68
Differentiable mapping      10
Differential operator      173
Dolbeault's lemma      74 79
Dolbeault's theorem      80
Dual form      93
Family, complex analytic      18
Family, differentiable      178
Fine resolution      73
Form, differential      67
Germ, function      27
Green's operator      158 176
Group, discontinuous      12
Hartogs' lemma      24
Hermitian metric      83
Hirzebruch, F.      15
Hodge decomposition theorem      114
Hodge metric      134
Holomorphic, function      1
Holomorphic, mapping      10
Implicit Mapping Theorem      7
integral      88
Inverse mapping theorem      6
Jacobian      5
Kaehler, form      84
Kaehler, manifold      84
Kaehler, metric      84
Kodaira, K., embedding theorem      136
Kodaira, K., vanishing theorem      125 131
Kuranishi, M., theorem of completeness      172
Laplacian      97
Locally trivial      39
Logarithmic transformation      16
Manifold, complex      7
Manifold, Hodge      134
Manifold, Hopf      14
Manifold, Kaehler      84
Meromorphic function      11
Nakano, S., vanishing theorem      132
Newlander — Nirenberg theorem      156
Norm      92
Norm, Sobolev      166
Oriented      88
Osgood's Theorem      2
Partition of unity      61
Poincare's lemma      70
Polycylinder      2
Polydisc      2
Positive line bundle      131
Product, inner      92
Product, wedge      67
Projective algebraic      11
Pseudogroup      8
Quadratic differentials      106
Quadric transformation      17
Quotient space      12
refinement      31
Rigid      45
Semicontinuity, upper      45
Serre duality      104
Sheaf      29
Sheaf, cohomology      31
Sheaf, exact sequence      57
Sheaf, fine      61
Sheaf, homomorphism      56
Sheaf, quotient      57
Sheaf, section      29
Sobelev lemma      166
Stability of Kaehler manifolds      180
Stalk      29
Stokes' theorem      91
Structure, canonical      9
Structure, complex      7
Structure, flat affine      9
Submanifold      11
Subsheaf      56
Surface, Hopf      23
Surface, ruled      15 25 41
Surgery      15
Tangent bundle      66
Tensor bundle      67
Torus      13 21—23
Vector field (holomorphic)      36
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте