Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Introduction to Axiomatic Quantum Field Theory
Àâòîðû: Bogolubov N.N., Logunov A.A., Todorov I.T.
Àííîòàöèÿ: At the end of 1960 we made plans to write a monograph about the general principles of quantum field theory and their experimental implications. We intended primarily to give an account of the progress of the theory of dispersion relations since the appearance of the book of Bogolubov, Medvedev and Polivanov ([BMP]. As an introduction we wanted to include a review of the various approaches to axiomatic field theory. This introduction had to cover not only the formulation of Bogolubov, Medvedev and Polivanov, based on the apparatus of functional derivatives of the 5-matrix and the condition of microcausality, but also the field formulation associated with the names of Wightman, Haag, Lehmann, Symanzik, Zimmermann, and others. In the course of the work the tasks (and with them the size) of the introduction grew larger and larger, until eventually it developed into this book.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1975
Êîëè÷åñòâî ñòðàíèö: 707
Äîáàâëåíà â êàòàëîã: 18.04.2010
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
(even invariant function) 334—335 511 528
(see “Homogeneous distributions”)
models 620 625—626
137 478—481 533
156
568—569
91 95
426—427
(dual of Hermitian elements of ) 598
(see “Quasilocal observables” “Algebra of
(see “Algebra of
(see “Functionals positive”)
22—25 27—28 32 48 69 105
(spaces of distributions) 27 48 55 69 85 105
(space of square-integrable functions) 16 30 38—40
(see “Domain common”)
(space of finite test-function sequences) 287—296 310
(nuclear space generated by fields) 256
interaction, in Yukawa theory 455 04
model 468—469 582 612—620 625- 626
(space of sequences of fast decrease) 32 43—44
(space of sequences of fast decrease), f-fold sequences 119—121 197—199 303
(spaces of differentiable functions) 17—18 20—22 25
Abelian (commutative) group 209
Abelian algebra 223 597 607
Absolutely continuous function 37
Acharya, R. 575 632 633
Additive operator 139 239
Adjoint (Hermitian conjugate) 36—37 569 586
Adjoint (Hermitian conjugate) in algebra (see “Involution”)
Adjoint (Hermitian conjugate) of field operator 253 260 262 529 531—532 538
Adjoint representation 224
Adler, S. L. 402 627
Admissible observable 115 116
Advanced distribution (see “Retarded and advanced distributions”)
Advanced product 392—399
Affinors 174
Akhiezer, N. I. 37 39 105 627
Akilov, G. P. 15 19 20 21 24 35 37 47 105 630
Aks, S. 0 575 655
Algebra 95 256 584
Algebra of bounded operators 586 589
Algebra of fields 255—257 297—300 599-601 602 609 610 614 616 624 625
Algebra of open set 257—258 350 581 596—597 599-610
Algebra of quasilocal observables 596—599
Algebra of unbounded operators 624
Algebra, normed 301 584—585
Algebra, nuclear 287—289 301
Algebraic approach 4 525 573 577 581—611 624—625
Algebraic approach, field theory and 582 583 590 597 607—611
Algebraic approach, scattering theory in 610—611
Almost local field 351 357 364—366 374—378 384-390
Analytic completion 429
Analytic continuation 332 445—446
Analytic extension 509
Analytic vector 608
Analyticity causality and 432—433 476
Analyticity in manifold 493—495
Analyticity in several variables 467
Analyticity of Fourier transform of retarded function 91—98 267—268 432—434 473 476
Analyticity of Green functions 359—360 429—449 454460 473 476
Analyticity of Lie group coordinates 214—215
Analyticity of Wightman functions 267—268 473 476 487 504—510
Analyticity on open real set 605—606
Analyticity, Lorentz invariance and 434 473—497 574
Analyticity, primitive domain of 429 438—441 447—449
Angular momentum of two-particle state 200—204 (see also “Spin” “Poincare “Lie
Angular momentum, 147 156 175 205 596 “Poincare “Lie
Angular momentum, complex 227 (see also “Spin” “Poincare “Lie
Angular momentum, orbital 189 516 “Poincare “Lie
Anomalous commutation relations 474—475
Anticommutation relations canonical 566 572 577
Anticommutation relations of -matrices 171
Anticommutation relations of field with creation-annihilation operators 403 410
Anticommutation relations of nonlocal scalar field 511—512
Anticommutation relations, discrete transformations and 322
Antiparticles 205—208 322 515 517
Antisymmetric unit tensor 133—134 146—147
Antiunitary operator 110 139 140 164—165 167 241 298 322 515
Antoine, J. — P. 240 633
Araki, H. 281 351 466 523 545 573 575 576 604 610 624 625 633 634
Arbuzov, B. A. 499 634
Artin, A. 241 627
Associative algebra 584
Asymptotic completeness 358 378—380
Asymptotic completeness, 406 523
Asymptotic conditions 3 357—358 362—363 365—367 381—384 389-390 465
Asymptotic fields 358 359 366—368 381—382 422 430—432 465 549
Asymptotic fields, relative weak locality and 5 20
Asymptotic fields, TCP transformation of 514—515
Asymptotic states 358 365—368 385—386 402—407 515-517
Asymptotically abelian algebra 625
Automorphism(s) 136 139—140 210 596
Automorphism(s), inner, outer 136
Automorphism(s), space-time, in model 616—618 625
Axial vector 146 154 344 500—501
Axiomatic approach 1—5 362—363 460 612 “BMP “LSZ “Algebraic
Axioms, enumerated 117—118 142 151 152 248—252 256 379
B* -algebra 585 (see also “C*-algebra”)
Banach algebra (Banach ring) 584—585
Banach space 15
Bardakci, K. 466 575 634
Bargmann — Hall — Wightman theorem 473—477 481—486 513 518 533 548 574
Bargmann, V. 574
Bargmann’s proof, of Wigner’s theorem 234—239 242
Bargmann’s theorem 141—142
Barton, G. 464 627
Baryon number 122 153 206 352 379 406 600
Baryons 151 406 “Proton”).
Baumann, K. 351 465 635 669
Belinfante, F. J. 241 635
Bender, C. M. 469 635
Berezansky, Yu. M. 105 608 625 627 635
Berezin, F. A. 577 627 635
Bessel functions 70 81 335 370
Bialynicki — Birula, I. 540 636
Bibliographical conventions 6 632—633
Bicompactness 213
Bilenky, S. M. 575 636
Bilinear form (see “Functional bilinear” “Scalar
Bilinear invariant forms of Dirac equation 178 322—323 499—501
Bilinear invariant forms of Majorana representations 567—568
Bispinor (see “Spinor four-component”)
Bjorken, J. D. 2 8 460 468 627
Blokhintsev, D. I. 351 508 636
BMP approach 3 400—422 430—432 450—453 465—468 525
Bochner — Schwartz theorem 269 271
Bochner, S. 495 627
Bogolubov transformation (see “Canonical transformation”)
Bogolubov, N. N. xvii xviii 3 8 72 102 106 146 171 186 241 242 322 333 336 352 399 401 405 409 414 422 429 445 455 465 466 467 468 556 561 574 577 625 628 636 637
Bohm, A. 240 637
Bohr, N. 350 637
Bollini, C. 468 638
Boost (see “Lorentz transformation pure”)
Borchers classes 474 517—525 575 583 604 609
Borchers classes and 519—520 (see also “Irreducibility of
Borchers — Zimmermann criterion 603 607—608
Borchers, H. J. 257 259 292 297 300 350 351 352 517 575 606 607 625 638
Born term 463
Bose operator 274
Bosons, Bose — Einstein statistics 194 252 402—403 526 564 572
Bound states 465
Boundedness of linear functional 18—19
Boundedness of operator 34—35 116
Boyce, J. F. 242 672
Bremermann, H. J. 467 638
Brenig, W. 363 464 639
Broken symmetry 475 562—563 577
Bros, J. 106 415 467 574 639
Bruhat, F. 252 639
Burgoyne, N. 576 639
C*-algebra 4 581—611 614 616 624—625
C-convex envelope 508
Cannon, J. T. 617 625 639
Canonical basis, in 340—343 564 570
Canonical commutation relations for infinite-component field 566 (see also “Anticommutation relations” “Commutator”)
Canonical commutation relations for position and momentum 118 195 “Commutator”)
Canonical commutation relations for scalar field 305 311 465 557—561 “Commutator”)
Canonical commutation relations in model 617 (see also “Anticommutation relations” “Commutator”)
Canonical commutation relations in discrete basis 558—560 (see also “Anticommutation relations” “Commutator”)
Canonical commutation relations inequivalent representations 548 556—561 577 “Commutator”)
Canonical commutation relations of creation-annihilation operators 304—305 (see also “Anticommutation relations” “Commutator”)
Canonical commutation relations, singular 561 (see also “Anticommutation relations” “Commutator”)
Canonical commutation relations, strange representations 475 560—561 “Commutator”)
Canonical commutation relations, Weyl form 559 569 “Commutator”)
Canonical coordinates 220 227—232
Canonical formalism (see “Lagrangian formalism” “Hamiltonian” “Canonical
Canonical transformation, linear 559—560
Cantor, G. 50 294
Cartan, E. 225
Cartan, E. J. 241 628
Cartesian product 30
Casimir operators 225 (see also “Poincare' group invariants” “Lorentz “Casimir
Cauchy inequality 588
Cauchy principal value 5
Cauchy sequence (see “Fundamental sequence”)
Causal distribution (“Distributions causal” “Green causal”)
Causal envelope 597 603—604
Causal Green function (see “Green functions causal”)
Causal shadow 597
Causality 2 247 414 465
Causality in algebraic approach 597
Causality, analyticity and 432—433 476
Causality, primitive 258—259 597 “Microcausality”)
Cayley parametrization 479—480
Center of algebra 589
Center-of-mass frame (see “Lorentz transformation into
Characteristic subgroup 210
Charge conjugation 131 179—180 183 192 206 320—323 325—326 352 529 568
Charge conjugation in homogeneous distribution formalism 344—345
Charge conjugation, space reflection and 325—326
Charge renormalization 613
Charge, electric 122 153 206—207 250 311—318 596 599 600
Charged field (see “Complex field”)
Chen, T. W. 460 468 639
Chernikov, N. A. 576 639
Chou Kuang — Chao 242 327 640 664
Circumflex, denoting omission 408
Classical theory, algebra of 597
Clifford algebras 241 499 “Anticommutation
Closed graph theorem 35
Closed operator 35
Closed subspace 216—217
Closure, of operator 37
Cluster decomposition property 151 272—282 293 351 531 576
Coherent subspace (Superselection sector) 123—127 139 142 250—251 312 602 605 607 609
Coherent subspace (Superselection sector), discrete transformations and 326—327 (see also “Superselection rule”)
Commutant 299—300 589 601—605
Commutation relations (see “Commutator” “Anticommutation “Canonical “Anomalous “Spin-and-statistics
Commutator in group 221
Commutator in Lie algebra 221—222
Commutator in parafield theory 540—546
Commutator Kaellen — Lehmann representation 330—331
Commutator of current with field 417—418
Commutator of field with creation-annihilation operators 403
Commutator of free scalar field [D(x)] 302—303 328 333—335 382 418 554—556
Commutator of functional differentiations 409
Commutator of generalized free field 328—331
Commutator of Heisenberg and asymptotic fields 465
Commutator of S-operator with creation-annihilation operators 409—412
Commutator of vector field 561 (see also “Canonical commutation relations” “Anticommutation
Compact energy, vector of 605—606 617
Compact group 143 213 219 225—226 600
Compact support, functions of (see “\mathcal{D}”)
Compactness 213
Compactness, Haag — Swieca 573
Compactness, relative 24
Compactness, weak 618
Compatible norms 21—22
Compatible topologies 27
Complement, of invariant subspace 217
Complete set, of operators 152—153 451—452
Complete space 15
Completeness, of field theory (see “Cyclicity”)
Completion, in norm 25 33
Complex (charged) field 250 283—284 311—314 610
Complex conjugation, antiunitary operators and 164
Composite models 379
Cone 74 151 440 488 494
Cone of positive functionals 592 594
Cone, double 606
Conjugate space 19—21 26—29 105 598
Conjugate, of spinor (Dirac conjugate) 178 183 186
Conjugation (see “Involution”)
Connectedness 213
Connectedness, simply 135 213
Constructive field theory (see “Models”)
Continuity 212
Continuity of functional 18—19 25
Continuity of operator in nuclear space 119—120
Continuity of representation 216—219
Continuity, absolute 37
Continuity, weak, of field 249
Continuity, weak, of representation 216
Continuous group (see “Topological group”)
Continuous spin 150
Convergence 212
Convergence in and 23 29
Convergence in 287—288
Convergence in 21 25 6
Convergence in C*-algebra 585—586
Convergence in conjugate of countably normed space 28—29
Convergence in countably normed space 22
Convergence in norm (uniform) 17 585—587
Convergence in normed space 15 17
Convergence in nuclear space 32
Convergence, strong 15 28 32 586 587 615
Convergence, weak 28 32 216 381 586 598 616
Convex set 282
Convolutes 73—74 375
Convolution 72—76 95 104 456—459
Convolution multiplication and 73 93 99—100
Coordinates, generalized 118
Coulomb law 281
Countably normed space (see “Vector space countably
Coupling constant 450—451 455 469 614
Covariance in algebraic approach 596 609
Covariance of analytic functions 473—497 574
Covariance of fields 249—251 (see also “Relativistic invariance” “SL(2) representations”)
Covering group 135
Covering, by open sets 49 213
CP transformation, CP violation 498—499 501 “Parity”)
Creation and annihilation operators 118—121 304—308 312 315—318 320—321 336 404 577 613
Creation and annihilation operators for parafield 539—544
Creation and annihilation operators in x-space 309 619
Creation and annihilation operators, asymptotic 389—390 403
Creation and annihilation operators, commutation relations with fields and S-operator 403 409—410
Creation and annihilation operators, majorana representations and 568—570 578
Creation and annihilation operators, normal commutation relations, derived 528
Creation and annihilation operators, notation 389
Current(s) 401—402 413—419 421 441—445 577
Current(s) as derivative of S-operator 3 359 401 413 415 430—432
Current(s) in Borchers class of field 521—522
Current(s) in Yang — Feldman equations 358 382 415 417
Current(s), algebras of 402
Current(s), electric 322—323 382 413
Current(s), Kaellen — Lehmann representation 432
Current(s), reconstruction theorem for 466
Current(s), satisfy axioms 432 514
Current(s), TCP transformation of 514
Ðåêëàìà