Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Introduction to Axiomatic Quantum Field Theory
Àâòîðû: Bogolubov N.N., Logunov A.A., Todorov I.T.
Àííîòàöèÿ: At the end of 1960 we made plans to write a monograph about the general principles of quantum field theory and their experimental implications. We intended primarily to give an account of the progress of the theory of dispersion relations since the appearance of the book of Bogolubov, Medvedev and Polivanov ([BMP]. As an introduction we wanted to include a review of the various approaches to axiomatic field theory. This introduction had to cover not only the formulation of Bogolubov, Medvedev and Polivanov, based on the apparatus of functional derivatives of the 5-matrix and the condition of microcausality, but also the field formulation associated with the names of Wightman, Haag, Lehmann, Symanzik, Zimmermann, and others. In the course of the work the tasks (and with them the size) of the introduction grew larger and larger, until eventually it developed into this book.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1975
Êîëè÷åñòâî ñòðàíèö: 707
Äîáàâëåíà â êàòàëîã: 18.04.2010
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Current(s), V — A (weak) 500—501
Current(s), VEV of 441—442
Cutoff 468—469 613—623 625
Cyclic group (Zw) 211
Cyclic representation 581 586 588—589
Cyclic vector 605—607 (see also “Cyclicity” “Cyclic
Cyclicity, of vacuum (completeness condition) 245 253—259 283 297 323—324 350 514 599
Dashen, R. F. 402 627
Davies, E. B. 624 640
Decomposability (see “Functional indecomposable” “Representation decomposable”)
Decomposition of unity (see “Partition of unity”)
Degrees of freedom, finitely many (see “Quantum mechanics”)
Delbourgo, R. 242 672
Dell’Antonio, G. — F. 353 545 546 576 604 624 640
Delta function 45—48 56—57 63—66 70 83—85 100-102
Delta function , derivatives 59 63—64 83 435 466
Density matrix 593
Derivation, in algebra 431
Derivative (see “Distributions differentiation”)
Diamond, Diamond property 597 603—604 616
Differential equations of fields (see “Wave equation” “Dirac “Klein
Differential equations, Fourier-transform solution 72 75—82
Dimension, relative 590
Dirac equation 181 183—192 207—208 241 313—314 321
Dirac equation, invariant solutions and Green functions 335
Dirac equation, orthogonality and completeness relations for solutions 185—186 208 314
Dirac equation, spinor solutions 185—186 207—208 321 “Particles spinor” “Gamma
Dirac matrices (see “Gamma matrices”)
Dirac spinor (see “Spinors four-component”)
Dirac, P. A. M. 578 640
Direct product 242 348—349
Direct sum 35 126
Direct-integral decomposition 143 152 162—163 203—205
Discrete transformations (discrete symmetries) 163—167 176—180 183 191—192 241 319—327 405 498—499 562
Discrete transformations (discrete symmetries), gauge transformations and 352
Discrete transformations (discrete symmetries), phases 163—167 176—180 325-327 352 499 502—503 “Time “Space-time “Charge “TCP “CP
Dispersion relations 3 4 399 465—466
Distributions (see also “Generalized functions “Tempered
Distributions of finite order 26 63 425
Distributions, addition and scalar mutltiplication 51—53
Distributions, as classes of sequences 50—54 106
Distributions, as functionals 45—50 105
Distributions, causal 100—104 106
Distributions, change of variables 54—55
Distributions, concentrated at origin 63 83—84
Distributions, convolution (see “Convolution”)
Distributions, differentiation 54—59 76 103—104
Distributions, division 61—66 72 76—77 106
Distributions, functions as 46—47
Distributions, homogeneous (see “Homogeneous distributions”)
Distributions, local properties 48—49 422—428 466
Distributions, Lorentz-invariant 12 82—89 103—104 106 269—271 473-497
Distributions, multiplication by functions 59—60
Distributions, multiplication by other distributions 59—61 90—91 99—104 106 383 415 453—460
Distributions, nonnegative, see Measure operator-valued 245—249
Distributions, on mass shell 420—421
Distributions, physics, role in 45—46
Distributions, renormalization and 453—460 468
Distributions, retarded (see “Retarded and advanced distributions”)
Distributions, terminological convention 48
Distributive laws 584
Dixmier, J. 584 587 588 605 624
Domain of analyticity (see “Analyticity primitive
Domain of holomorphy 5 09
Domain of unbounded operator 34—35 38 615
Domain, common, of fields 2 248 294—295 310
Doplicher, S. 598 599 600 625 640 641
Dotted indices (see “Spinors indices”)
Double-valued representations (see also “Spin-and-statistics theorem” “Spinors” “Poincare “Representations ray”)
Drell, S. D. 2 8 460 468 627
Dual matrix 168—169
Dual space (see “Conjugate space”)
Duality 604
Duffin — Kemmer algebra 542—544 576
Duffin, R. J. 576 641
Dunford, N. 20 105 598 628
Dyson product (see “Time-ordered product”)
Dyson, F. J. 332 353 467 468 575 641
Ecker, G. 150 641
Edwards, C. M. 624 641
Efimov, G. V. 466 641 332 352 641
Ehrenpreis, L. 106 642
Eisenhart, L. P. 242 628
Electrodynamics (electromagnetic interaction) (see “Quantum electrodynamics”)
Electron 206 316
Elliptic equations 469
Energy 122 184
Energy, positivity (see “Spectral condition”)
Energy, sign of 148—150
Envelope of holomorphy 509—5 10
Epstein, H. 106 415 446 467 522 573 574 575 610 625 639 642
Equal-time commutation relations (see “Canonical commutation relations”)
Equivalence relation (equivalence classes) 125 294—295 519
Equivalence, of representations 216 558—561 581
Error, in measurements 594 599
Essential self-adjointness (see “Linear operator essentially
Estimates, in constructive theory 615 616 619
Euclidean group (Euclidean motions, ) 211 549—551
Euclidean group (Euclidean motions, in dimension 2 ) 156 162 217—218
Even distributions 84—88
Even invariant function (see )
Even-odd rule 537
Ex (asymptotic notation) 366
expectation value 109 113—114 116 138 591 593
Extension, of operator 35 38
External field 242 352
Extremal functional (see “Functional indecomposable” “States extremal
Extreme points 282
E_{3} (see “Euclidean group”)
f group 210 211
Fabri, E. 562 577 642
Factor group 211
Factor space 295 588—589
Factor, in algebra 581 589—590 604
Factor, in algebra, 607 624
Fainberg, V. Ya 281 428 466 468 642 652
Faithful representation 587 594—595 597
Fast decrease, sequences of (see “\mathcal{S}”)
Federbush, P. G. 576 642
Feinberg, G. 150 352 642
Feldman, G. 464 577 642 643 679
Fell, J. M. G. 595 643
Fermi operator 274
Fermions, Fermi — Dirac statistics 252 281 318 402—403 526 571—573 610
Fermions, Fermi — Dirac statistics, gauge transformation and 405—406 (see also “Particles spinor” “Spinor
Feynman diagrams 103 274 454—455 459—460 466
Field equation (see “Wave equation” “Klein “Dirac
Field operators (fields) 245—249
Field operators (fields), algebra of (see “Algebra of
Field operators (fields), defined at fixed time 258 364—365 548—561 603 616-617
Field operators (fields), defined at point 245 282—286 35
Field operators (fields), homogeneous distribution formalism 343—345
Field operators (fields), index convention 253—254 262
Field operators (fields), products, polynomials 253—256 260 296
Field operators (fields), self-adjointness 252 607—609 616—617 625 “Heisenberg
Fierz, M. 241 576 643
Filippov, A. T. 499 634
Fock basis 119
Fock space, Fock representation 118—121 162—163 193—208 242 303 560 612—615 618
Fock space, Fock representation for infinite-component field 569—570 572
Fock space, Fock representation for parafield 539—544
Fock, V. 193 242 643
Forces, range of 281 385—386
Four-momentum (see also “Poincare group” “Lie “Spectral
Four-point functions 270—271 360 429 435—449 562
Four-vector, Hermitian matrix and 110 132—137 notation”)
Fourier transforms 11 12 67—89 106 269 523
Fourier transforms of derivatives 72
Fourier transforms of free fields 304 313—314
Fourier transforms of generalized free field 332
Fourier transforms of Hermite function 121
Fourier transforms of Hermitian field 387
Fourier transforms of quasilocal distribution 435
Fourier transforms of retarded and advanced 4—point functions 438—441
Fourier transforms of retarded distributions 90—99 267—268
Fourier transforms of TVEV 274
Fourier transforms of Wightman functions 265—268
Fourier transforms, in 20 289
Fourier transforms, local properties and 424—428
Fourier transforms, sign convention 67—69 265—266 289 367
Frank, W. M. 469 643
Free fields, references 352 (see also “Scalar field free” “Spinor free” “Generalized
Freshet space 22
Fried, H. M. 468 643
Friedrichs, K. O. 352 626 628
Frobenius, F. G. 209
Froissart, M. 576 643
Full reducibility (see “Representation decomposable”)
Function analytic (see Analyticity)
Function of operator (see “Linear operator function
Function, test (see “\mathcal{S}”)
Functional (variational) derivative 359—360 401 407—412 416 430—431 444 465
Functional analysis 1 11—44
Functional(s) analytic 466
Functional(s) analytic, bilinear (bilinear form) 29—30 36 616—617
Functional(s), Hermitian 290 598
Functional(s), indecomposable 282 292—294 297—301 588 591 593
Functional(s), linear 18—21 25—26 34
Functional(s), normalized 292 598
Functional(s), positive, in 20
Functional(s), positive, in algebra 290—291 587-589 591—594
Functional(s), S-operator as 403—404 409—414 430-432
Functional(s), space of 592
Functional(s), subordinate 301
Fundamental (Cauchy) sequence 15 22 50—54 294
Fundamental solution 304—305 (see also “Green functions”)
Gachok, V. P. 577 608 625 644
Galilei group 142
Galindo, A. 539 576 644
Galois, E. 209
Gamma matrices ( -matrices) 170—176 241
Gamma matrices ( -matrices), groups of similarity transformations 183
Gamma matrices ( -matrices), positive-energy solutions and 181
Gamma matrices ( -matrices), products 172—174 499—500
Gamma matrices ( -matrices), realizations 176 180—183 321—322
Gamma matrices ( -matrices), two-dimensional 620—621 (see also “Bilinear invariant forms” “Spinors four-component” “Dirac
Gauge, Gauge transformation 311 352 404—406 423 532 600—601
Gel’fand — Naimark classification 338—342
Gel’fand — Naimark — Segal (GNS) construction 581 587—589 594 598 618
Gel’fand, I. M. 22 24 25 27 29 31 32 42 48 49 63 70 73 105 106 240 242 252 269 338 339 340 342 344 347 353 466 567 577 628 629 644 645
General linear group 131
Generalized eigenvector (generalized state) 39—42 105 109 114—118 197
Generalized eigenvector (generalized state) of momentum 39—40 157 199 307—308
Generalized eigenvector (generalized state), normalization 117 (see also “Rigged Hilbert space”)
Generalized free field 259 328—332 337 352—353 380 524
Generalized functions 48 57—58 422—428 466
Generator (see “Infinitesimal operator” “Lie
George, C. 242 645
Giambiagi, J. J. 468 638
Girding, L. 73 85 88 106 241 252 350 577 644 677
GL(2) 131
Glazer, V. 106 415 467 574 639 645
Glazman, I. M. 37 39 105 627
Glimm, J. 614 615 616 617 618 619 621 622 625 626 645 646
Global nature of locality 507—509 575
GNS (see “Gel’fand-Naimark-Segal construction”)
Goldberger, M. L. 8 629
Golodets, V. Ya 577 646
Gonzales Dominguez, A. 468 638
Good, R. H. 174 241 547
Gourdin, M. 575 647
Govorkov, A. B. 546 576 647
Graev, M. I. 106 339 340 353 628
Graph, Graph limit 35 622
Grawert, G. 575 647
Green functions 384 392 398 423 468 562
Green functions and 436—437
Green functions for spinor field 335 455
Green functions in 392 400—401 464
Green functions in, reduction formula in 383—384 465
Green functions in, scattering theory results summarized 400—401
Green functions of Klein-Gordon equation 70—72 102—104 334—335 382 422 455 467
Green functions, analyticity 359—360 466—467
Green functions, causal 70—72 102—104 334—335 353 359—360 383 401—402 422 429 432—445 454—560 462-463
Green functions, four-point 360 429 435—449 466—467 562
Green functions, Kaelle'n-Lehmann representation (see “Kallen-Lehmann representation of
Green functions, n-point 467
Green functions, retarded and advanced 334—335 382 401 430—434 437—441 443—445 446—449 464 466-467
Green functions, smeared 394 400—401
Green functions, time-ordered (see “Causal”)
Green functions, unphysical singularities in 466
Green, H. S. 540 576 647
Greenberg, O. W. 328 332 352 353 526 539 544 545 546 575 576 577
Green’s ansatz 541—546
Grodsky, I. T. 349 648
Grossmann, A. 240 648
Grothendieck, A. 32 105 629
Group 209—219 242 “Poincare etc.”)
Group extensions 352
Guenin, M. 584 607 624 625 648
Guersey, F. 242 649
Guillot, J. C. 241 649
Gupta — Bleuler formulation 109 112
Haag — Araki field 609—610
Haag — Kastler axioms 581 582 596—597 599 602 603 603 618
Haag — Ruelle theory 357—358 362—380 385 388 399 464
Haag, R. 3 4 127 258 259 350 351
Haag-Araki-Kastler approach (see “Algebraic approach”)
Haag’s theorem 475 548—562 576—577 612-614
Hadrons 151 406 “Proton etc.”)
Hagedorn, R. 240 650
Hahn — Banach theorem 21
Hall — Wightman theorem 151 434 474 489—497
Hall, D. 481 489 492 552 574 576
Hamermesh, M. 219 242 526 629
Hamiltonian, Hamiltonian formulation 8 475 548—549 556 561 576 597 612—616 620—622 626
Hankel function (see “Bessel functions”)
Harish — Chandra 242 650
Hausdorff space 212
Heisenberg current (see “Current” “Heisenberg
Heisenberg field 3—4 362 382 401 415 422 465 614—617 622—623
Heisenberg picture 3 137—138
Heisenberg, W. 2 362 401 465 650
Heisenberg’s nonlinear theory 112
Helicity 150 (see also “Spin” “Massless
Henley, E. M., xviii 8 629
Hepp, K. 106 281 351 363 374 383 395 397 399 464 465 468 490 492 574 626 634 650 651 654
Hermite functions 24 120—121 558
Hermitian conjugate (see “Adjoint”)
Hermitian element, of algebra (see “Self-adjoint element”)
Hermitian field (see “Neutral field” “Majorana
Hermitian operator (see “Linear operator symmetric
Hilbert problem, fifth 214—215
Hilbert space 15—17 19 30 33—44 105 112—114 122—126 240
Hilbert space in algebraic approach 593—596 599—600 602-607 “States”)
Hilgevoord, J. 465 629
Hoeegh — Krohn, R. 625 651
Hoermander, L. 106 652
Holomorphic function (see “Analyticity”)
Holomorphy envelope, Holomorphy domain 509—510
Homogeneous distributions 338—349 502 564—565
Homomorphism 135 136
Homotopy 624
Hyperbolic rotation (see “Lorentz transformation pure”)
Hyperboloid (see “Mass shell” “Measure on
Hypermaximal symmetric operator 37 (see also “Linear operator self-adjoint”)
Hyperons 406
Ideal 223 290—293 296 310 587
Ideal, right, left 290—291 588
In-states (see “Asymptotic states”)
Ðåêëàìà