Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			         
		          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
				        
					
			         
		          
		        
			         
		          
			
			         
		         
       		 
			         
		          
                
                    
                        
                     
                  
		
			         
		          
		        
			         
		          
		
            
	     
	    
	     
	    
	    
            
		 
                
                    Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå      
 Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter 
 
                                 
                                
                                    Íàçâàíèå:   Introduction to Axiomatic Quantum Field Theory 
Àâòîðû:   Bogolubov N.N., Logunov A.A., Todorov I.T. 
Àííîòàöèÿ:  At the end of 1960 we made plans to write a monograph about the general principles of  quantum field theory and their experimental implications. We intended primarily to give an account of the progress of the theory of dispersion relations since the appearance of  the book of Bogolubov, Medvedev and Polivanov ([BMP]. As an introduction we wanted to include a review of the various approaches to axiomatic field theory. This introduction had to cover not only the formulation of Bogolubov, Medvedev and Polivanov, based on the apparatus of functional derivatives of the 5-matrix and the condition of microcausality, but also the field formulation associated with the names of Wightman, Haag, Lehmann,   Symanzik, Zimmermann, and others. In the course of the work the tasks (and with them the size) of the introduction grew larger and larger, until eventually it developed into this book.
 
ßçûê:   
Ðóáðèêà:  Ìàòåìàòèêà / 
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö  
ed2k:   ed2k stats  
Ãîä èçäàíèÿ:  1975 
Êîëè÷åñòâî ñòðàíèö:  707 
Äîáàâëåíà â êàòàëîã:  18.04.2010 
Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			         
	          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                        Current(s), V — A (weak)        500—501    
Current(s), VEV of        441—442    
Cutoff        468—469   613—623   625    
Cyclic group (Zw)        211    
Cyclic representation        581   586   588—589    
Cyclic vector        605—607 (see also “Cyclicity”   “Cyclic    
Cyclicity, of vacuum (completeness condition)        245   253—259   283   297   323—324   350   514   599    
Dashen, R. F.        402   627    
Davies, E. B.        624   640    
Decomposability        (see “Functional   indecomposable”   “Representation   decomposable”)    
Decomposition of unity        (see “Partition of unity”)    
Degrees of freedom, finitely many        (see “Quantum mechanics”)    
Delbourgo, R.        242   672    
Dell’Antonio, G. — F.        353   545   546   576   604   624   640    
Delta function        45—48   56—57   63—66   70   83—85   100-102    
Delta function  , derivatives       59   63—64   83   435   466    
Density matrix        593    
Derivation, in algebra        431    
Derivative        (see “Distributions   differentiation”)    
Diamond, Diamond property        597   603—604   616    
Differential equations of fields        (see “Wave equation”   “Dirac   “Klein    
Differential equations, Fourier-transform solution        72   75—82    
Dimension, relative        590    
Dirac equation        181   183—192   207—208   241   313—314   321    
Dirac equation, invariant solutions and Green functions        335    
Dirac equation, orthogonality and completeness relations for solutions        185—186   208   314    
Dirac equation, spinor solutions        185—186   207—208   321   “Particles   spinor”   “Gamma    
Dirac matrices        (see “Gamma matrices”)    
Dirac spinor        (see “Spinors   four-component”)    
Dirac, P. A. M.        578   640    
Direct product        242   348—349    
Direct sum        35   126    
Direct-integral decomposition        143   152   162—163   203—205    
Discrete transformations (discrete symmetries)        163—167   176—180   183   191—192   241   319—327   405   498—499   562    
Discrete transformations (discrete symmetries), gauge transformations and        352    
Discrete transformations (discrete symmetries), phases        163—167   176—180   325-327   352   499   502—503   “Time   “Space-time   “Charge   “TCP   “CP    
Dispersion relations        3   4   399   465—466    
Distributions        (see also “Generalized functions     “Tempered    
Distributions of finite order        26   63   425    
Distributions, addition and scalar mutltiplication        51—53    
Distributions, as classes of sequences        50—54   106    
Distributions, as functionals        45—50   105    
Distributions, causal        100—104   106    
Distributions, change of variables        54—55    
Distributions, concentrated at origin        63   83—84    
Distributions, convolution        (see “Convolution”)    
Distributions, differentiation        54—59   76   103—104    
Distributions, division        61—66   72   76—77   106    
Distributions, functions as        46—47    
Distributions, homogeneous        (see “Homogeneous distributions”)    
Distributions, local properties        48—49   422—428   466    
Distributions, Lorentz-invariant        12   82—89   103—104   106   269—271   473-497    
Distributions, multiplication by functions        59—60    
Distributions, multiplication by other distributions        59—61   90—91   99—104   106   383   415   453—460    
Distributions, nonnegative, see Measure operator-valued        245—249    
Distributions, on mass shell        420—421    
Distributions, physics, role in        45—46    
Distributions, renormalization and        453—460   468    
Distributions, retarded        (see “Retarded and advanced distributions”)    
Distributions, terminological convention        48    
Distributive laws        584    
Dixmier, J.        584   587   588   605   624    
Domain of analyticity        (see “Analyticity   primitive    
Domain of holomorphy        5   09    
Domain of unbounded operator        34—35   38   615    
Domain, common, of fields       2   248   294—295   310    
Doplicher, S.        598   599   600   625   640   641    
Dotted indices        (see “Spinors   indices”)    
Double-valued representations        (see also “Spin-and-statistics theorem”   “Spinors”   “Poincare   “Representations   ray”)    
Drell, S. D.        2   8   460   468   627    
Dual matrix       168—169    
Dual space        (see “Conjugate space”)    
Duality        604    
Duffin — Kemmer algebra        542—544   576    
Duffin, R. J.        576   641    
Dunford, N.        20   105   598   628    
Dyson product        (see “Time-ordered product”)    
Dyson, F. J.        332   353   467   468   575   641    
Ecker, G.        150   641    
Edwards, C. M.        624   641    
Efimov, G. V.        466   641   332   352   641    
Ehrenpreis, L.        106   642    
Eisenhart, L. P.        242   628    
Electrodynamics (electromagnetic interaction)        (see “Quantum electrodynamics”)    
Electron        206   316    
Elliptic equations        469    
Energy        122   184    
Energy, positivity        (see “Spectral condition”)    
Energy, sign of        148—150    
Envelope of holomorphy        509—5   10    
Epstein, H.        106   415   446   467   522   573   574   575   610   625   639   642    
Equal-time commutation relations        (see “Canonical commutation relations”)    
Equivalence relation (equivalence classes)        125   294—295   519    
Equivalence, of representations        216   558—561   581    
Error, in measurements        594   599    
Essential self-adjointness        (see “Linear operator   essentially    
Estimates, in constructive theory        615   616   619    
Euclidean group (Euclidean motions,  )       211   549—551    
Euclidean group (Euclidean motions, in dimension 2  )       156   162   217—218    
Even distributions        84—88    
Even invariant function        (see  )    
Even-odd rule        537    
Ex (asymptotic notation)        366    
expectation value        109   113—114   116   138   591   593    
Extension, of operator        35   38    
External field        242   352    
Extremal functional        (see “Functional   indecomposable”   “States   extremal    
Extreme points        282    
E_{3}       (see “Euclidean group”)    
f group        210   211    
Fabri, E.        562   577   642    
Factor group        211    
Factor space        295   588—589    
Factor, in algebra        581   589—590   604    
Factor, in algebra,        607   624    
Fainberg, V. Ya        281   428   466   468   642   652    
Faithful representation        587   594—595   597    
Fast decrease, sequences of        (see “\mathcal{S}”)    
Federbush, P. G.        576   642    
Feinberg, G.        150   352   642    
Feldman, G.        464   577   642   643   679    
Fell, J. M. G.        595   643    
Fermi operator        274    
Fermions, Fermi — Dirac statistics        252   281   318   402—403   526   571—573   610    
Fermions, Fermi — Dirac statistics, gauge transformation and        405—406 (see also “Particles   spinor”   “Spinor    
Feynman diagrams        103   274   454—455   459—460   466    
Field equation        (see “Wave equation”   “Klein   “Dirac    
Field operators (fields)        245—249    
Field operators (fields), algebra of        (see “Algebra   of    
Field operators (fields), defined at fixed time        258   364—365   548—561   603   616-617    
Field operators (fields), defined at point        245   282—286   35    
Field operators (fields), homogeneous distribution formalism        343—345    
Field operators (fields), index convention        253—254   262    
Field operators (fields), products, polynomials        253—256   260   296    
Field operators (fields), self-adjointness        252   607—609   616—617   625   “Heisenberg    
Fierz, M.        241   576   643    
Filippov, A. T.        499   634    
Fock basis        119    
Fock space, Fock representation        118—121   162—163   193—208   242   303   560   612—615   618    
Fock space, Fock representation for infinite-component field        569—570   572    
Fock space, Fock representation for parafield        539—544    
Fock, V.        193   242   643    
Forces, range of        281   385—386    
Four-momentum        (see also “Poincare group”   “Lie   “Spectral    
Four-point functions        270—271   360   429   435—449   562    
Four-vector, Hermitian matrix and        110   132—137   notation”)    
Fourier transforms        11   12   67—89   106   269   523    
Fourier transforms of derivatives        72    
Fourier transforms of free fields        304   313—314    
Fourier transforms of generalized free field        332    
Fourier transforms of Hermite function        121    
Fourier transforms of Hermitian field        387    
Fourier transforms of quasilocal distribution        435    
Fourier transforms of retarded and advanced 4—point functions        438—441    
Fourier transforms of retarded distributions        90—99   267—268    
Fourier transforms of TVEV        274    
Fourier transforms of Wightman functions        265—268    
Fourier transforms, in        20   289    
Fourier transforms, local properties and        424—428    
Fourier transforms, sign convention        67—69   265—266   289   367    
Frank, W. M.        469   643    
Free fields, references        352 (see also “Scalar field   free”   “Spinor   free”   “Generalized    
Freshet space        22    
Fried, H. M.        468   643    
Friedrichs, K. O.        352   626   628    
Frobenius, F. G.        209    
Froissart, M.        576   643    
Full reducibility        (see “Representation   decomposable”)    
Function analytic        (see Analyticity)    
Function of operator        (see “Linear operator   function    
Function, test        (see “\mathcal{S}”)    
Functional (variational) derivative        359—360   401   407—412   416   430—431   444   465    
Functional analysis        1   11—44    
Functional(s) analytic        466    
Functional(s) analytic, bilinear (bilinear form)        29—30   36   616—617    
Functional(s), Hermitian        290   598    
Functional(s), indecomposable        282   292—294   297—301   588   591   593    
Functional(s), linear        18—21   25—26   34    
Functional(s), normalized        292   598    
Functional(s), positive, in        20    
Functional(s), positive, in algebra        290—291   587-589   591—594    
Functional(s), S-operator as        403—404   409—414   430-432    
Functional(s), space of        592    
Functional(s), subordinate        301    
Fundamental (Cauchy) sequence        15   22   50—54   294    
Fundamental solution        304—305 (see also “Green functions”)    
Gachok, V. P.        577   608   625   644    
Galilei group        142    
Galindo, A.        539   576   644    
Galois, E.        209    
Gamma matrices ( -matrices)       170—176   241    
Gamma matrices ( -matrices), groups of similarity transformations       183    
Gamma matrices ( -matrices), positive-energy solutions and       181    
Gamma matrices ( -matrices), products       172—174   499—500    
Gamma matrices ( -matrices), realizations       176   180—183   321—322    
Gamma matrices ( -matrices), two-dimensional       620—621 (see also “Bilinear invariant forms”   “Spinors   four-component”   “Dirac    
Gauge, Gauge transformation        311   352   404—406   423   532   600—601    
Gel’fand — Naimark classification        338—342    
Gel’fand — Naimark — Segal (GNS) construction        581   587—589   594   598   618    
Gel’fand, I. M.        22   24   25   27   29   31   32   42   48   49   63   70   73   105   106   240   242   252   269   338   339   340   342   344   347   353   466   567   577   628   629   644   645    
General linear group        131    
Generalized eigenvector (generalized state)        39—42   105   109   114—118   197    
Generalized eigenvector (generalized state) of momentum        39—40   157   199   307—308    
Generalized eigenvector (generalized state), normalization        117 (see also “Rigged Hilbert space”)    
Generalized free field        259   328—332   337   352—353   380   524    
Generalized functions        48   57—58   422—428   466    
Generator        (see “Infinitesimal operator”   “Lie    
George, C.        242   645    
Giambiagi, J. J.        468   638    
Girding, L.        73   85   88   106   241   252   350   577   644   677    
GL(2)       131    
Glazer, V.        106   415   467   574   639   645    
Glazman, I. M.        37   39   105   627    
Glimm, J.        614   615   616   617   618   619   621   622   625   626   645   646    
Global nature of locality        507—509   575    
GNS        (see “Gel’fand-Naimark-Segal construction”)    
Goldberger, M. L.        8   629    
Golodets, V. Ya        577   646    
Gonzales Dominguez, A.        468   638    
Good, R. H.        174   241   547    
Gourdin, M.        575   647    
Govorkov, A. B.        546   576   647    
Graev, M. I.        106   339   340   353   628    
Graph, Graph limit        35   622    
Grawert, G.        575   647    
Green functions        384   392   398   423   468   562    
Green functions and        436—437    
Green functions for spinor field        335   455    
Green functions in        392   400—401   464    
Green functions in, reduction formula in        383—384   465    
Green functions in, scattering theory results summarized        400—401    
Green functions of Klein-Gordon equation        70—72   102—104   334—335   382   422   455   467    
Green functions, analyticity        359—360   466—467    
Green functions, causal        70—72   102—104   334—335   353   359—360   383   401—402   422   429   432—445   454—560   462-463    
Green functions, four-point        360   429   435—449   466—467   562    
Green functions, Kaelle'n-Lehmann representation        (see “Kallen-Lehmann representation   of    
Green functions, n-point        467    
Green functions, retarded and advanced        334—335   382   401   430—434   437—441   443—445   446—449   464   466-467    
Green functions, smeared        394   400—401    
Green functions, time-ordered        (see “Causal”)    
Green functions, unphysical singularities in        466    
Green, H. S.        540   576   647    
Greenberg, O. W.        328   332   352   353   526   539   544   545   546   575   576   577    
Green’s ansatz        541—546    
Grodsky, I. T.        349   648    
Grossmann, A.        240   648    
Grothendieck, A.        32   105   629    
Group        209—219   242   “Poincare   etc.”)    
Group extensions        352    
Guenin, M.        584   607   624   625   648    
Guersey, F.        242   649    
Guillot, J. C.        241   649    
Gupta — Bleuler formulation        109   112    
Haag — Araki field        609—610    
Haag — Kastler axioms        581   582   596—597   599   602   603   603   618    
Haag — Ruelle theory        357—358   362—380   385   388   399   464    
Haag, R.        3   4   127   258   259   350   351    
Haag-Araki-Kastler approach        (see “Algebraic approach”)    
Haag’s theorem        475   548—562   576—577   612-614    
Hadrons        151   406   “Proton   etc.”)    
Hagedorn, R.        240   650    
Hahn — Banach theorem        21    
Hall — Wightman theorem        151   434   474   489—497    
Hall, D.        481   489   492   552   574   576    
Hamermesh, M.        219   242   526   629    
Hamiltonian, Hamiltonian formulation        8   475   548—549   556   561   576   597   612—616   620—622   626    
Hankel function        (see “Bessel functions”)    
Harish — Chandra        242   650    
Hausdorff space        212    
Heisenberg current        (see “Current”   “Heisenberg    
Heisenberg field        3—4   362   382   401   415   422   465   614—617   622—623    
Heisenberg picture        3   137—138    
Heisenberg, W.        2   362   401   465   650    
Heisenberg’s nonlinear theory        112    
Helicity        150 (see also “Spin”   “Massless    
Henley, E. M., xviii        8   629    
Hepp, K.        106   281   351   363   374   383   395   397   399   464   465   468   490   492   574   626   634   650   651   654    
Hermite functions        24   120—121   558    
Hermitian conjugate        (see “Adjoint”)    
Hermitian element, of algebra        (see “Self-adjoint element”)    
Hermitian field        (see “Neutral field”   “Majorana    
Hermitian operator        (see “Linear operator   symmetric    
Hilbert problem, fifth        214—215    
Hilbert space        15—17   19   30   33—44   105   112—114   122—126   240    
Hilbert space in algebraic approach        593—596   599—600   602-607   “States”)    
Hilgevoord, J.        465   629    
Hoeegh — Krohn, R.        625   651    
Hoermander, L.        106   652    
Holomorphic function        (see “Analyticity”)    
Holomorphy envelope, Holomorphy domain        509—510    
Homogeneous distributions        338—349   502   564—565    
Homomorphism        135   136    
Homotopy        624    
Hyperbolic rotation        (see “Lorentz transformation   pure”)    
Hyperboloid        (see “Mass shell”   “Measure   on    
Hypermaximal symmetric operator        37 (see also “Linear operator   self-adjoint”)    
Hyperons        406    
Ideal        223   290—293   296   310   587    
Ideal, right, left        290—291   588    
In-states        (see “Asymptotic states”)    
                            
                     
                  
			 
		          
			Ðåêëàìà