Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Introduction to Axiomatic Quantum Field Theory
Àâòîðû: Bogolubov N.N., Logunov A.A., Todorov I.T.
Àííîòàöèÿ: At the end of 1960 we made plans to write a monograph about the general principles of quantum field theory and their experimental implications. We intended primarily to give an account of the progress of the theory of dispersion relations since the appearance of the book of Bogolubov, Medvedev and Polivanov ([BMP]. As an introduction we wanted to include a review of the various approaches to axiomatic field theory. This introduction had to cover not only the formulation of Bogolubov, Medvedev and Polivanov, based on the apparatus of functional derivatives of the 5-matrix and the condition of microcausality, but also the field formulation associated with the names of Wightman, Haag, Lehmann, Symanzik, Zimmermann, and others. In the course of the work the tasks (and with them the size) of the introduction grew larger and larger, until eventually it developed into this book.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1975
Êîëè÷åñòâî ñòðàíèö: 707
Äîáàâëåíà â êàòàëîã: 18.04.2010
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Indecomposability (see “Functional indecomposable” “Representation decomposable”)
Independence, of axioms 350
Inductive limit 27 29 32
Inelastic processes 576
Infinite-component fields 337 349 353 564—573 577—578 610-611
Infinitesimal operator (generator) 220—221 231—233(see
Ingraham, R. L. 250 351 508 652
Interaction representation (picture) 548—556 561
Intermediate-state expansion 407
Interpolating field 513 517 524—525
Invariance (see “Relativistic invariance”)
Invariant subgroup 210
Invariant subspace 216—217 602
Invariants, algebraic 346—347 490—492 “Poincare invariants”)
Inverse, in group 209
Inversions (see “Discrete transformations”)
Involution (conjugation) 288—289 569 581 584—586
Iofa, M. Z. 281 428 652
Irreducibility of coherent subspace 602
Irreducibility of fields 257 258 328—329 350
Irreducibility of representation (see “Representation irreducible”)
Irreducibility of von Neumann algebra 124 126
Isometric operator (see “Linear operator isometric”)
Isomorphism 68
Isomorphism, local 131—132
Isotony 596
Isotopic spin 127—128 327 405 562
Isotropy group (see “Little group”)
Iverson, G. J. 150 652
Jacob, M. 242 652
Jacobi identity 222 232—233
Jacobi polynomials 158 341
Jaffe, A. M. 426 427 466 468 469 615 616 617 618 619 620 621 622 625 626 639 645 646 652 653
Jehle, H. 242 665
Johnson, K. A. 576 642
Joos, H. 158 240 241 653
Jordan form 481
Jordan, T. F. 351 653
Jost points 473—474 487—489 495 505 510—513 518 530—531 552—553 574
Jost — Lehmann — Dyson representation 332 353
Jost, R. xvii 240 332 350 351 352 353 363 464 488 513 534 574 575 577 629 651 653 654
K-mesons 151 406 517 575 2
Kabir, P. K. 499 575 630
Kadison, R. V. 596 604 607 624 649 654
Kadyshevsky, V. G. 149 654
Kaellen, G. 464 466 468 510 654 655
Kahan, T. 242 629
Kalleh — Lehmann representation 269—270 330—332 349 357 363—364 384—385 432 466
Kalleh — Lehmann representation of commutator 330—331 443
Kalleh — Lehmann representation of Green functions 359—360 429 432—435 443—444 453 455—460 466 468
Kamefuchi, S. 466 575 576 655
Kantorovich, L. V. 15 19 20 21 24 35 37 47 105 630
Kaschluhn, F. 465 656
Kastler, D. 241 352 584 594 595 596 624 625 630 641 649 656
Kato, T. 626 650
Kats, G. I. 42 105 656
Kemmer, N. 576 656
Kernel 587
Kernel theorem (see “Nuclear theorem”)
Kharatyan, S. G. 240 656
Khatset, B. I. 625 637
Khoruzhy, S. S. 281 428 466 657
Kimelson, C. O. 466 657
Klein transformation 474—475 534—538 576
Klein — Gordon equation 302—305 311 420 565
Klein — Gordon equation, invariant solutions and Green functions 333—335
Klein — Gordon equation, smooth solutions 358 365—374 428 464 free”)
Klein — Gordon operator 310
Klein — Gordon operator, current defined through 382 415
Klein, O. 576 657
Kolerov, G. I. 351 508 636
Korsunsky, L. M. 271 669
Kostyuchenko, A. G. 105 644
Kraus, K 625 657
Kristensen, P. 121 240 657
Lagrangian as functional of asymptotic fields 414
Lagrangian formalism 258 274 352 360 413 414 421 454—455 548 556—561 574-575
Lagrangian formalism, algebraic approach and 600
Lagrangian formalism, axiomatic approach and 1—2 7—8 612
Lagrangian formalism, matrix approach includes 450—453 (see also “Perturbation theory” “Models” “Hamiltonian”)
Lanford, O. E. 625 653 657
Langerholc, J. 466 575 609 624 657
Laplace transform 91—98 106
Lassner, G. 352 658
Lebesgue measure 47 294—295
Lee, T. D. 327 499 500 517 575 658
Legendre polynomials 17
Legendre polynomials, associated 202
Lehmann, H. 332 353 381 401 464 466 467 645 654 658 659
Lepton number 352 406
Levy — Leblond, J. -M. 142 659
Lewis, J. T. 624 640
Licht, A. L. 332 350 352 575 648 659
Lie algebra 147 220—233 “Lie
Lie fields 332 352
Lie group 140 213—233
Lie’s theorems 226—233 242
Lie’s theorems for representations 232—233
Light cones 74 151 “Spectral
Linear functional (see “Functional linear”)
Linear operator 34—43 105
Linear operator, essentially self-adjoint 37 607—609 615 625
Linear operator, function of 42—43 112 117 148 153
Linear operator, Hermitian (see “Symmetric”)
Linear operator, isometric 39
Linear operator, self-adjoint 37—39 41—43 112—118 126 593 615—617 626
Linear operator, symmetric (Hermitian) 37—39 226
Linear operator, unitary 36 38—39 41 43 139—140 550 558—560 562-563 etc.”)
Linear properties, of Wightman functions 271 282 292
Lions, J. L. 73 85 88 106 644 659
Lipshutz, N. R. 575 659
Little group (stability group, isotropy group) 155—156 162
Local coordinates 214—215
Local observables, Local quantities 2—5 583 591—611 “Quasilocal
Local properties of generalized functions 422—428
Local properties of S-matrix 411—414
Locality (local commutativity or anticommutativity) 245 251—252 283 350—351 415-418
Locality (local commutativity or anticommutativity) in algebraic approach 597 604 606 609
Locality (local commutativity or anticommutativity) in models 617 623
Locality (local commutativity or anticommutativity) of currents 415—416
Locality (local commutativity or anticommutativity) of infinite-component field 566
Locality (local commutativity or anticommutativity) of parafields 545—547 576
Locality (local commutativity or anticommutativity), analyticity and 505—507
Locality (local commutativity or anticommutativity), cluster decomposition property and 279—281
Locality (local commutativity or anticommutativity), gauge transformation and 532
Locality (local commutativity or anticommutativity), generalized 529—530
Locality (local commutativity or anticommutativity), generalized free field and 329
Locality (local commutativity or anticommutativity), global nature 507—509 575
Locality (local commutativity or anticommutativity), ideal associated with 291—292
Locality (local commutativity or anticommutativity), transitivity of 517—518 520—521
Locality (local commutativity or anticommutativity), Wightman functions and 268
Locality (local commutativity or anticommutativity), WLC and 511—512
Locality (local commutativity or anticommutativity)in spin-statistics theorem 474—475
Localizability (see “Position operator”)
localization 350
Locally compact group 143 213
Locally convex space 598
Locally finite covering 49
Locally Fock representation 618—619
Logunov, A. A. 466 616 659
Lomont, J. S. 242 659
Lopuszanski, J. T. 577 659
Lorentz covariance (see “Covariance” “Relativistic
Lorentz group 129—137 226 240
Lorentz group, algebraic invariants 346—347 490—492
Lorentz group, Casimir operators 340 570
Lorentz group, charge-conjugate spinor and 179
Lorentz group, complex 137 473—474 477—486
Lorentz group, complex extension of Lie algebra 148—149
Lorentz group, components and subgroups 130—131
Lorentz group, extended (L) 129 497
Lorentz group, inhomogeneous 131
Lorentz group, orthochronous 130—131 474 483 489—490 501
Lorentz group, proper 131 (N.B.: In some places is called the proper Lorentz group)
Lorentz group, pseudoscalar invariants 490—492
Lorentz group, representations 242 250—251 481—483 501-502
Lorentz group, restricted 82 130—135 140 248 473 476 480 490
Lorentz group, SL(2) 110 131—137 144—145 241 482-483
Lorentz group, two-dimensional 617
Lorentz group, vacuum and 151 (see also “SL(2)” “Poincare'
Lorentz invariance (see “Relativistic invariance” “Distributions Lorentz-invariant” “Analyticity Lorentz
Lorentz transformation 129—130 133—135 159
Lorentz transformation complex 477—482 487
Lorentz transformation in Fock space 200
Lorentz transformation of algebra (automorphism) 596 617—618 625
Lorentz transformation of almost local field 376—378
Lorentz transformation of smooth solution 374
Lorentz transformation of spinor field 179
Lorentz transformation of Wightman functions 264 (see also “Lorentz group”)
Lorentz transformation special (see “Pure”)
Lorentz transformation, into rest frame 155 159—160 184—185 201
Lorentz transformation, orthochronous 130
Lorentz transformation, proper 130
Lorentz transformation, pure (boost) 134—135 144 155 159 617
Lorentz transformation, restricted 135
LSZ approach 2—4 358—359 381—399 415—422 464-467
Lueders, G. 575 576 647 660
Lyubarskii, G. Ya 242 630
Macdonald function (see “Bessel functions”)
Macfarlane, A. J. 241 660
Mack, G. 150 652
Mackey, G. W. 240 252 630 660
Majorana basis 181—183 314 529
Majorana basis and charge conjugation 182 529
Majorana field 314 535—538
Majorana representations 567—571 578
Majorana, E. 314 577 578 660
Malgrange, B. 106 660
Mandelstam variables 497
Mandelstam, S. 497 660
Mandula, J. E. 469 635
Manifold 214 494—495
Manoharan, A. C. 510 660
Markov — Kakutani theorem 598
Marshak, R. E. 8 127 405 499 500 630
Martin, A. 428 661
Martin, W. T. 495 627
Martineau, A. 427 466 661
Mass 111 149—150 152 302 362—363 405 524
Mass degeneracy (see “Mass spectrum”)
Mass gap 152 270 274 276 281 351 385—386 406 432
Mass of two-particle state 200—204
Mass shell (hyperboloid) 156—157 384 411 420—421 428 603
Mass spectrum 337 349 573 600 610—611
Mass, renormalized 460 462—463 613
Massless particles, Massless fields 281 351 577 “Neutrino”)
Matthews, P. T. 171 241 352 577 630 642 643
Maurin, K. 37 105 292 295 352 630 661
Maximal Abelian set (see “Complete set”)
McCoy, B. M. 469 635
Measure 88—89
Measure on hyperboloid [{dp)] 157 389
Measure, finite invariant 284—285
Measurement process distributional fields and 245—248
Measurement process distributional fields and error in 594 599
Measurement process distributional fields and locality and 251 (see also “Observables”)
Medvedev, B. V. xvii 3 399 401 422 429 445 460 466 467 468 628 661 662
Meiman, N. N. 428 466 662
Mejlbo, L. 121 240 657
Mesons 193 379 399 406 442 “K-mesons” “Vector
Messiah, A. M. L. 526 539 544 576 648 662
Methee, P. D. 85 106 662
Metric in Hilbert space (positivity) 109 112 117 268—269 291
Metric of Lie algebra 224—225
Metric of space-time, signature 7 (see also “Scalar product”)
Metric, complex Lorentz group and 477
Metric, indefinite 109 112
Michel, L. 352 663
Microcausality 69 251 359—360 401 413—416 419—421 423 430—433 438 465
Mikusinski, J. 106 630
Minkowski, P. 486 574 663
Minlos, R. A. 240 242 340 342 344 347 353 567 628
Misra, B. 607 624 648
Mixed state 591 593
Models, nontrivial 4 5 388 468—469 582 612—623 625—626
Moeller, N. H. 510 663
Momentum conjugate (canonical) 118 121 549 552 557 558 603
Momentum conjugate (canonical) of particles 199 316 322
Momentum-space matrix elements 249
Montel space (see “Perfect space”)
Moussa, P. 241 242 663
Multiplicative operator 289
Multiplicative positivity (see “Functional positive in
Multiplicative symmetries 352
Multipliers 60—61 73 90 91 277
Muraskin, M. 468 663
Naimark, M. A. 143 219 220 242 340 342 353 567 584 585 587 590 624 630 663
Neighborhood 22 28 212 “Topology”)
Nelson, E. 608 614 625 663—664
Net 596 507 602—604 609
Neumann function (see “Bessel functions”)
Neumann, J. v. (see “Von Neumann J.”)
Neutral (Hermitian) field 250 252 302—310 387 413 416—417
Neutral (Hermitian) field as example (see “Scalar field”)
Neutral (Hermitian) field, complex field in terms of 311 314
Neutral (Hermitian) field, spinor (see “Majorana field”)
Neutrino 150
Neutron 206 (see also “Nucleons”)
Newton, T. D. 141 195 241 664
Nguyen Van Hieu 242 466 631 659
Nishijima, K. 8 464 465 468 631 663 664
Noether’s theorem 146
Nonlocal fields 252 281 350—351 508 511—512 565
Nonrenormalizable theories 249 423 428
Norm 14—16 18 20—23 119
Norm in algebra 581 585—587
Norm of functional 19 20 588
Norm of operator 34—35 39
Normal (Wick-ordered) product 308 322—323 404 408 422 452 522—523 624
Normal commutation relations (see “Anomalous commutation relations”)
Normal subgroup 210 211
Normed space (see “Vector space normed”)
Nuclear (kernel) theorem 12 29—32 105 106 254—255 261
Nuclear operator (nuclear mapping) 31 105
Nuclear space 31—34 105 114—115 119 120 256 295 nuclear”)
Nucleons 406 442 453—454 460 465
Number operator 198 308 317—318 540—542 619 0 4
Numbering system, for sections, etc 7
Nussbaum, A. E. 608 664
Observables 109 112—118 122 123 126—127 137—140 251 591 593 610
Observables, currents and 402 (see also “Measurement process” “Local
Odd distributions 84—88
Oehme, R. 467 517 575 638 658
Off-mass-shell matrix elements 398—399 401 410—415 442-443
Ogievetsky, V. I. 327 664
Oksak, A. I. 240 339 347 348 349 353 572 573 578 656 664 665
Okun’, L. B. 171 241 500 631 665
One-particle states, see Single-particle states Open set 212
Operation 591—593 624
Operator, see Linear operator Order, of distribution 26 63 425
Orthogonal groups 183 210—211 477
Orzalesi, C. A. 577 665
Out-states (see “Asymptotic states”)
Overlap 384—389 396—399
O’Raifeartaigh, L. 575 655
Paley, R. E. A. C. 427 631
Paralocal field 545—547 576
Parasiuk, O. S. 102 106 468 637 665
Parastatistics, Parafields 526—527 539—547 576
Parity 327 344 496—499 562
Ðåêëàìà