Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Introduction to Axiomatic Quantum Field Theory

Àâòîðû: Bogolubov N.N., Logunov A.A., Todorov I.T.

Àííîòàöèÿ:

At the end of 1960 we made plans to write a monograph about the general principles of quantum field theory and their experimental implications. We intended primarily to give an account of the progress of the theory of dispersion relations since the appearance of the book of Bogolubov, Medvedev and Polivanov ([BMP]. As an introduction we wanted to include a review of the various approaches to axiomatic field theory. This introduction had to cover not only the formulation of Bogolubov, Medvedev and Polivanov, based on the apparatus of functional derivatives of the 5-matrix and the condition of microcausality, but also the field formulation associated with the names of Wightman, Haag, Lehmann, Symanzik, Zimmermann, and others. In the course of the work the tasks (and with them the size) of the introduction grew larger and larger, until eventually it developed into this book.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1975

Êîëè÷åñòâî ñòðàíèö: 707

Äîáàâëåíà â êàòàëîã: 18.04.2010

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Parke, W. C.      242 665
Parseval equation      69
Parthasarathy, K. R.      241 665
Partial derivative      (see “Distributions differentiation”)
Particles      149—150 152 156 259 272 362 380 395—396 398 402 526 539
Particles, asymptotically free      368 405 526
Particles, quantum numbers of      441
Particles, scalar      193—205 306—308 312 465
Particles, scattering processes      436—437 495—497
Particles, spinor      175 205—208 315—318
Particles, symmetry groups and      242
Particles, TCP operator and      322
Particles, unstable (resonances)      406 441 517
Partition (decomposition) of unity      49—50 279 388
Pauli matrices      132 134
Pauli realization, of $\gamma$-matrices      181—183
Pauli — Villars      103
Pauli — Villars in perturbation theory      360—361 460—463 468
Pauli — Villars regularization      103
Pauli, W.      172 241 575 576 665 666
Pauli’s lemma      172—174 241
Perfect (Montel) space      24 28 29 32
Perturbation theory      2 103—104 274 360—361 382 383 413 415 421 423 450—463 467—469 556 561 612 619—621
Perturbation theory, convergence of      468—469 (see also “Feynman diagram” “Lagrangian
Petermann, A.      465 673
Petiau, G.      576 666
Petit, J. L.      241 649
Petrina, D. Ya      508 575 625 637 666
Phase-space volume      100 04
Photon      150
Physical equivalence      581 594—595 599
Physical quantities      (see “Observables”)
Physical representation      614 618—619
Picasso, L. E.      562 577 642
Pictures, in quantum theory      137—138 (see also “Interaction representation”)
Pietsch, A.      32 105 631
Pion ($\pi$-meson)      128 151 406 441 453—455 465 496
Piron, C.      113 653
Plane waves      114
Pohlmeyer, K.      575 577 638 666
Poincare group      109—111 131 “Relativistic
Poincare group, complex      505 (see also “Lorentz group” “Relativistic
Poincare group, components      131 (see also “Lorentz group” “Relativistic
Poincare group, covering groups $(\tilde{\rho}, \rho_{0})$      110 135—136 140—142 “Relativistic
Poincare group, extended $(\rho)$      131 163—167 “Relativistic
Poincare group, invariants (Casimir operators)      111 147—151 153 200 “Relativistic
Poincare group, Lie algebra (generators, infinitesimal operators)      110—111 143—149 153 161 189 595-596 “Relativistic
Poincare group, orthochronous spinor $(\rho^{\uparrow})$      183 (see also “Lorentz group” “Relativistic
Poincare group, representation of, in field theory      109—111 140—142 151—152 200—205 249—250 289 295—296 299—300 595-596 “Relativistic
Poincare group, representations      110—111 142—167 187—192 200—205 240—242 262 “Relativistic
Poincare group, restricted $(\rho^{\uparrow}_{+})$      110 131 137 140—142 144 162 “Relativistic
Polar decomposition      135 158—159 161
Polivanov, M. K.      xvii 3 399 401 422 429 445 460 465 467 468 628 667 662 666
Polynomial growth, functions of      47 5 3—54
Polynomial invariants      (see “Casimir operators”)
Polynomials in field      (see “Field operators products” “Wick
Polynomials, homogeneous      339—342
Ponomarev, V. A.      339 644
Pontryagin, L. S.      135 213 214 220 232 242 631
Position operator      194—195 309 351
Positive-frequency solutions, convention      334 336 368—369 381
Poulsen, E. T.      121 240 657
Powers, R. T.      469 577 624 625 653 666
Primitive causality      258—259 597
Primitive domain, of analyticity      429 438—441 447—449
Primitivity      597
Principal value      57—58
probability      36 113—115 117—118 138 140 362 407 592—593 624
Product of distributions      (see “Distributions multiplication
Product of fields      (see “Field operators products” “Wightman
Projection operator      42 113—114 116 123—124 126 138—139 590 602
Projection operator as observable      113 123 126
Projection operator, orthogonal      113
Projection operator, regularized $\theta$-function      460—463
Propagator      459—460 575 causal”)
Proper subgroup      210
Proton      316 454 468 496 497
Prugovecki, E.      352 666
Pseudo-orthogonal group      568
Pseudo-orthogonality      477
Pseudoscalars currents and particles      344 441 442 454
Pseudoscalars currents and particles, formed from      4—
Pseudoscalars currents and particles, vectors      490—492
Pseudotensors      344
PT symmetry      573
Pugh, R. E.      460 466 468 666 667
Pure operation      592
Pure state      591
Quadratic estimates      615 616
Quantum electrodynamics      109 112 150 352 382 413 496 562
Quantum field      (see “Field operators” “Axioms Scalar
quantum mechanics      118—121 138 142 240 423 549 552 557—560
Quantum numbers      441
Quarks      576
Quartets      (see “Steinmann identities”)
Quasianalytic functions      427
Quasianalytic vector      608
Quasilocal observables      596—599 (see also “Local observables” “Algebra of
Quasilocal operator      360 416—422 435 450—451 461—462 466
Quasilocal operator, inevitability of      421—422
Question, as observable      113
Quotient algebra      587—589
R-points      505
R-product $(R_{\chi}$      392—399
Radiation operators      3 4 399 412—416 423 430—432
Radiation operators, fourth-order      435
Range, of forces      281 385—386
Rashevsky, P. K.      174 241 352 631 667
Rays (unit rays)      112 113 117 127 138 142 234—239 593
Rays (unit rays) of unitary operators      140—141 (see also “States”)
Reconstruction theorem      246 260—261 293—301 351-352
Reconstruction, from von Neumann algebras      609—610
Redmond, P.      465 667
Reducible representation      217 (see also “Representation decomposable
Reduction formula      358—359 382—384 392—399 465
Reed, M. C.      577 584 624 667
Reeh, H.      258 292 350 351 605 667
Reflections      (see “Discrete transformations”)
Reflexivity      589
Regular parametrization, in $SL(2)\otimesSL(2)$      478—480
Regular states      115 194
Regularization analytic      468
Regularization analytic of distribution      102 103
Reiss, H. R.      469 667
Relative dimension      5 90
Relative locality, Relative weak locality      518—521 524 532 575
Relative parity      327
Relativistic invariance (Lorentz invariance, Poincare invariance)      109—110 129 208 240 283 473—475 550 552
Relativistic invariance (Lorentz invariance, Poincare invariance) in $\Phi^{4}$ model      617—618 619 625
Relativistic invariance (Lorentz invariance, Poincare invariance) in algebraic approach      596 609
Relativistic invariance (Lorentz invariance, Poincare invariance) in homogeneous distribution formalism      345—346
Relativistic invariance (Lorentz invariance, Poincare invariance) of asymptotic fields and states      367 404—405 464
Relativistic invariance (Lorentz invariance, Poincare invariance) of T-product      383
Relativistic invariance (Lorentz invariance, Poincare invariance) of Wightman functional      291—292 295—296
Relativistic invariance (Lorentz invariance, Poincare invariance) of Wightman functions      261—264
Relativistic invariance (Lorentz invariance, Poincare invariance), axioms      142 249—250
Relativistic invariance (Lorentz invariance, Poincare invariance), in S—matrix theory      2 404—405 417
Relativistic invariance (Lorentz invariance, Poincare invariance), locality and      329 350—351 508
Relativistic invariance (Lorentz invariance, Poincare invariance), of S—operator      380 405—406
Relativistic invariance (Lorentz invariance, Poincare invariance), physical meaning      138
Relativistic invariance (Lorentz invariance, Poincare invariance), regularization and      463
Relativistic invariance (Lorentz invariance, Poincare invariance), translation invariance implies      300
Removable singularities      495
Renormalization      361 453—460 462—463 468 612 613
Renormalization of Hilbert space      614 618—619
Representation      215—233
Representation by argument transformations      145—146
Representation of algebra      586—589 594—595 614 618-619
Representation of simply connected group      135
Representation, adjoint      224
Representation, complex conjugate      262
Representation, decomposable      217—218 339
Representation, finite-dimensional      218—219 227
Representation, irreducible      143 216—219 588
Representation, Lie’s theorems for      232—233
Representation, of $\gamma$-matrices      (see “Gamma matrices realizations”)
Representation, ray (projective, “up to a factor”)      109—110 138—142 163-164
Representation, ray Real representation      501 528—529
Representation, unitary      215 216 218 219 226 “Star “Lorentz etc. representations”)
Resolution of identity      43
Resonances      406 441
Rest frame      (see “Lorentz transformation into
Restriction      210
Retarded and advanced distributions      12 74—75 90—98 99 106 269—270 433 retarded “Smeared
Riemann — Lebesgue lemma      523
Riesz’s theorems      19 20 24 36 88 255
Rigged Hilbert space      12 32—34 39—44 105 109 114—118 157 194—199 240 256 space
Ring      115 585
Rivier, D.      465 673
Roberts, J. E.      599 600 640
Robinson, D. W.      332 352 353 625 641 656 667 668
Rohrlich, F.      2 460 468 629 639 668
Rollnik, H.      575 647
Rosen, L.      620 626 668
Rosenfeld, L.      350 637
Rotation group [SO(3)]      155—156 211 213 216 550
Rotation group [SO(3)], generators      (see “Angular momentum”)
Rotation group [SO(3)], representations      156 240 242
Rotation group [SO(3)], structure constants, metric      226
Rue lie, D.      257 275 276 281 350 351 363 378 464 467 510 585 625 631 634 651 668
S (spaces of test functions)      11 23—25 29—30 32 46—48 73 105 287-288
S (spaces of test functions), $S_{f}$-and      121
S (spaces of test functions), Fourier transforms      48 67—68
S-matrix (scattering matrix, scattering amplitude)      2—3 358—359 362 382—383 392 395—399 401 418-419 465
S-matrix (scattering matrix, scattering amplitude), Borchers classes and      474 520—525 575—576
S-matrix (scattering matrix, scattering amplitude), Born term      463
S-matrix (scattering matrix, scattering amplitude), covariant terms in      495—497
S-matrix (scattering matrix, scattering amplitude), general properties      404—407
S-matrix (scattering matrix, scattering amplitude), interpolating field for      513 517 524—525
S-matrix (scattering matrix, scattering amplitude), local properties      411—414
S-matrix (scattering matrix, scattering amplitude), nontrivial, in models      5 575—576 625- 626
S-matrix (scattering matrix, scattering amplitude), one-particle singularities      399
S-matrix (scattering matrix, scattering amplitude), polynomial boundedness      423
S-matrix (scattering matrix, scattering amplitude), relation to 4—point functions      436—437 562
S-matrix (scattering matrix, scattering amplitude), TCP and      514—517 610
S-matrix approach      (see “BMP approach”)
S-operator (scattering operator)      3 359—361 380 401 403—417 422 430—432 442—443 450—453 461-462
S-operator (scattering operator) in Lagrangian formalism      413—414 451—453
S-operator (scattering operator) in terms of TCP operators      514—515
Salam, A.      242 468 575 655 668 669 672
Samoilenko, Yu. S.      271 669
Scalar field      250 263—264 269—271 275—276 283—284 287 294 363—368 381—384 402—404 465 552-556 612-620
Scalar field, algebra of      602—610 624
Scalar field, Borchers class      521—525 575 609
Scalar field, formed from derivatives      523
Scalar field, free      72 302—313 328 333—335 422 522—524 552—557 575 602-604 608 612—613 624
Scalar field, Lagrangian      557
Scalar field, retarded Green function      443—444
Scalar field, TVEVs      273—274 (see also “Particles scalar”)
Scalar produce(s)      15—16 19—20 38 138 139
Scalar produce(s) for spinor functions      188—190
Scalar produce(s) in 2-particle space      203—204
Scalar produce(s) in factor space      589
Scalar produce(s) in Fock space      194 208 331
Scalar produce(s) in n complex vectors      490—495
Scalar produce(s) in nuclear space      33
Scalar produce(s) in pseudo — Euclidean space      7 65 67 129—130
Scalar produce(s) in reconstruction theorem      295
Scalar produce(s) in rigged Hilbert space      115—116
Scalar produce(s), analytic function of      474 489—497
Scalar produce(s), distributions in      47—48 115—116
Scalar produce(s), in $d_{\chi}$ [representation of SL(2)]      2 565
Scattering generalized states and      114
Scattering theory      8 362 388 398 399 400—402 525 610—611 625 626 “LSZ “BMP “S—matrix”)
Schlieder, S.      258 292 350 351 605 667
Schmidt, W.      351 669
Schroedinger picture      137—138
Schroer, B.      258 259 350 351 352 428 466 523 575 609 624 634 638 650 657 669
Schur, I.      209
Schur’s lemma      218—219 242
Schwartz, J. T.      20 105 598 628
Schwartz, L.      31 46 48 74 105 106 631 669
Schweber, S. S.      2 8 170 171 241 335 352 422 460 631
Schwinger, J.      575 669
Second quantization      197—198 (see also “Fock space” “Scalar free” “Spinor free”)
Segal, I. E.      615 624 625 626 669 670
Seiler, R.      476 574 663
Self-adjoint element, of algebra      587—588 590 591 598
Self-adjoint operator      (see “Linear operator self-adjoint”)
Self-adjoint representation      219
Self-dual representation      344—345
Self-energy      103 360 453—463 468 620
Seminorm      15
Semisimple algebra      223—225
Semisimple group      210 211 223—225
Separability      17 32
Separating vector      605—607
Separation axiom      212
Sesquilinearity      16
Several complex variables, functions of      467
Shapiro, Z. Ya      240 242 340 342 344 347 353 567 628
Shilov, G. E.      22 24 25 27 29 48 49 63 70 73 105 106 241 338 353 466 629 644
Shirkov, D. V.      xviii 2 3 8 72 102 146 171 186 322 333 336 352 401 409 414 422 455 465 466 467 468 556 561 577 628 636 637
Shirokov, M. I.      205 242 575 640 670
Shirokov, Yu. M.      204 241 670—671
Sign function $[\epsilon(x)]$      79
Sikorski, R.      106 630
Simon, B.      31 106 469 671
Simple algebra      223
Simple group      210 211 224
Simply connected set      135
Single-particle states      193—196 200 205—208 311—312 362 368 379 407 442—443 610
Single-particle states, projection onto      363—364
Single-valuedness, of Wightman functions      264—265
SL(2) (special linear group, unimodular group)      110 131—137 158—159 240 241
SL(2) (special linear group, unimodular group), representations      144—145 168—176 188 247—251 337—349 353 482-483 528—529 564—570 578
Slash notation (p)      170—171 5-
Smeared products of fields $[T_{\chi}(x_{1},...,x_{n}), etc.]$      392—399
Smirnov, V. I.      226 481 491—492 631
Smith, L.      624 634
Smith, M. — S. B.      624 634
SO(2, 1)      156 162
SO(3, 2)      568—569 5
Sobolev, S. L.      105 671
Space reflection      130 136 146 154 164 169—170 176—179 191 319-327 475 496—497 562—563
Space reflection in homogeneous distribution formalism      343—344
Space reflection of V — A current      500
Space reflection, charge conjugation and      325—326
Space-time inversion      474 478 497 532— 533
Spacelike hull      606
Spacelike separation, notation      414 597
Special linear group      (see “SL(2)”)
Spectral condition(s)      111 151—152 164 276 283 406 441—445 465 512 554—555 619
Spectral condition(s) for infinite-component field      566
Spectral condition(s) in algebraic approach      599 604—606 625
Spectral condition(s), advanced products and      399
Spectral condition(s), cluster decomposition property and      151
Spectral condition(s), generalized free field and      330
Spectral condition(s), ideal associated with      291—292
Spectral condition(s), strong      (see “Mass gap”)
Spectral condition(s), weak      151 265
Spectral projections (spectral decomposition, spectral function)      42—43 114 252 590 603
Spectral representation      (see “Kaellen — Lehmann representation”)
Spectral theorem      34—44 105
Spectrum, continuous      114 117
Spectrum, discrete      113—114
Spectrum, simple      152
Speer, E. R.      242 352 468 631 671
Spherical coordinates      80
Spherical functions, generalized      347—348
1 2 3 4 5
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå