Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Introduction to Axiomatic Quantum Field Theory
Àâòîðû: Bogolubov N.N., Logunov A.A., Todorov I.T.
Àííîòàöèÿ: At the end of 1960 we made plans to write a monograph about the general principles of quantum field theory and their experimental implications. We intended primarily to give an account of the progress of the theory of dispersion relations since the appearance of the book of Bogolubov, Medvedev and Polivanov ([BMP]. As an introduction we wanted to include a review of the various approaches to axiomatic field theory. This introduction had to cover not only the formulation of Bogolubov, Medvedev and Polivanov, based on the apparatus of functional derivatives of the 5-matrix and the condition of microcausality, but also the field formulation associated with the names of Wightman, Haag, Lehmann, Symanzik, Zimmermann, and others. In the course of the work the tasks (and with them the size) of the introduction grew larger and larger, until eventually it developed into this book.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1975
Êîëè÷åñòâî ñòðàíèö: 707
Äîáàâëåíà â êàòàëîã: 18.04.2010
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Parke, W. C. 242 665
Parseval equation 69
Parthasarathy, K. R. 241 665
Partial derivative (see “Distributions differentiation”)
Particles 149—150 152 156 259 272 362 380 395—396 398 402 526 539
Particles, asymptotically free 368 405 526
Particles, quantum numbers of 441
Particles, scalar 193—205 306—308 312 465
Particles, scattering processes 436—437 495—497
Particles, spinor 175 205—208 315—318
Particles, symmetry groups and 242
Particles, TCP operator and 322
Particles, unstable (resonances) 406 441 517
Partition (decomposition) of unity 49—50 279 388
Pauli matrices 132 134
Pauli realization, of -matrices 181—183
Pauli — Villars 103
Pauli — Villars in perturbation theory 360—361 460—463 468
Pauli — Villars regularization 103
Pauli, W. 172 241 575 576 665 666
Pauli’s lemma 172—174 241
Perfect (Montel) space 24 28 29 32
Perturbation theory 2 103—104 274 360—361 382 383 413 415 421 423 450—463 467—469 556 561 612 619—621
Perturbation theory, convergence of 468—469 (see also “Feynman diagram” “Lagrangian
Petermann, A. 465 673
Petiau, G. 576 666
Petit, J. L. 241 649
Petrina, D. Ya 508 575 625 637 666
Phase-space volume 100 04
Photon 150
Physical equivalence 581 594—595 599
Physical quantities (see “Observables”)
Physical representation 614 618—619
Picasso, L. E. 562 577 642
Pictures, in quantum theory 137—138 (see also “Interaction representation”)
Pietsch, A. 32 105 631
Pion ( -meson) 128 151 406 441 453—455 465 496
Piron, C. 113 653
Plane waves 114
Pohlmeyer, K. 575 577 638 666
Poincare group 109—111 131 “Relativistic
Poincare group, complex 505 (see also “Lorentz group” “Relativistic
Poincare group, components 131 (see also “Lorentz group” “Relativistic
Poincare group, covering groups 110 135—136 140—142 “Relativistic
Poincare group, extended 131 163—167 “Relativistic
Poincare group, invariants (Casimir operators) 111 147—151 153 200 “Relativistic
Poincare group, Lie algebra (generators, infinitesimal operators) 110—111 143—149 153 161 189 595-596 “Relativistic
Poincare group, orthochronous spinor 183 (see also “Lorentz group” “Relativistic
Poincare group, representation of, in field theory 109—111 140—142 151—152 200—205 249—250 289 295—296 299—300 595-596 “Relativistic
Poincare group, representations 110—111 142—167 187—192 200—205 240—242 262 “Relativistic
Poincare group, restricted 110 131 137 140—142 144 162 “Relativistic
Polar decomposition 135 158—159 161
Polivanov, M. K. xvii 3 399 401 422 429 445 460 465 467 468 628 667 662 666
Polynomial growth, functions of 47 5 3—54
Polynomial invariants (see “Casimir operators”)
Polynomials in field (see “Field operators products” “Wick
Polynomials, homogeneous 339—342
Ponomarev, V. A. 339 644
Pontryagin, L. S. 135 213 214 220 232 242 631
Position operator 194—195 309 351
Positive-frequency solutions, convention 334 336 368—369 381
Poulsen, E. T. 121 240 657
Powers, R. T. 469 577 624 625 653 666
Primitive causality 258—259 597
Primitive domain, of analyticity 429 438—441 447—449
Primitivity 597
Principal value 57—58
probability 36 113—115 117—118 138 140 362 407 592—593 624
Product of distributions (see “Distributions multiplication
Product of fields (see “Field operators products” “Wightman
Projection operator 42 113—114 116 123—124 126 138—139 590 602
Projection operator as observable 113 123 126
Projection operator, orthogonal 113
Projection operator, regularized -function 460—463
Propagator 459—460 575 causal”)
Proper subgroup 210
Proton 316 454 468 496 497
Prugovecki, E. 352 666
Pseudo-orthogonal group 568
Pseudo-orthogonality 477
Pseudoscalars currents and particles 344 441 442 454
Pseudoscalars currents and particles, formed from 4—
Pseudoscalars currents and particles, vectors 490—492
Pseudotensors 344
PT symmetry 573
Pugh, R. E. 460 466 468 666 667
Pure operation 592
Pure state 591
Quadratic estimates 615 616
Quantum electrodynamics 109 112 150 352 382 413 496 562
Quantum field (see “Field operators” “Axioms Scalar
quantum mechanics 118—121 138 142 240 423 549 552 557—560
Quantum numbers 441
Quarks 576
Quartets (see “Steinmann identities”)
Quasianalytic functions 427
Quasianalytic vector 608
Quasilocal observables 596—599 (see also “Local observables” “Algebra of
Quasilocal operator 360 416—422 435 450—451 461—462 466
Quasilocal operator, inevitability of 421—422
Question, as observable 113
Quotient algebra 587—589
R-points 505
R-product 392—399
Radiation operators 3 4 399 412—416 423 430—432
Radiation operators, fourth-order 435
Range, of forces 281 385—386
Rashevsky, P. K. 174 241 352 631 667
Rays (unit rays) 112 113 117 127 138 142 234—239 593
Rays (unit rays) of unitary operators 140—141 (see also “States”)
Reconstruction theorem 246 260—261 293—301 351-352
Reconstruction, from von Neumann algebras 609—610
Redmond, P. 465 667
Reducible representation 217 (see also “Representation decomposable
Reduction formula 358—359 382—384 392—399 465
Reed, M. C. 577 584 624 667
Reeh, H. 258 292 350 351 605 667
Reflections (see “Discrete transformations”)
Reflexivity 589
Regular parametrization, in 478—480
Regular states 115 194
Regularization analytic 468
Regularization analytic of distribution 102 103
Reiss, H. R. 469 667
Relative dimension 5 90
Relative locality, Relative weak locality 518—521 524 532 575
Relative parity 327
Relativistic invariance (Lorentz invariance, Poincare invariance) 109—110 129 208 240 283 473—475 550 552
Relativistic invariance (Lorentz invariance, Poincare invariance) in model 617—618 619 625
Relativistic invariance (Lorentz invariance, Poincare invariance) in algebraic approach 596 609
Relativistic invariance (Lorentz invariance, Poincare invariance) in homogeneous distribution formalism 345—346
Relativistic invariance (Lorentz invariance, Poincare invariance) of asymptotic fields and states 367 404—405 464
Relativistic invariance (Lorentz invariance, Poincare invariance) of T-product 383
Relativistic invariance (Lorentz invariance, Poincare invariance) of Wightman functional 291—292 295—296
Relativistic invariance (Lorentz invariance, Poincare invariance) of Wightman functions 261—264
Relativistic invariance (Lorentz invariance, Poincare invariance), axioms 142 249—250
Relativistic invariance (Lorentz invariance, Poincare invariance), in S—matrix theory 2 404—405 417
Relativistic invariance (Lorentz invariance, Poincare invariance), locality and 329 350—351 508
Relativistic invariance (Lorentz invariance, Poincare invariance), of S—operator 380 405—406
Relativistic invariance (Lorentz invariance, Poincare invariance), physical meaning 138
Relativistic invariance (Lorentz invariance, Poincare invariance), regularization and 463
Relativistic invariance (Lorentz invariance, Poincare invariance), translation invariance implies 300
Removable singularities 495
Renormalization 361 453—460 462—463 468 612 613
Renormalization of Hilbert space 614 618—619
Representation 215—233
Representation by argument transformations 145—146
Representation of algebra 586—589 594—595 614 618-619
Representation of simply connected group 135
Representation, adjoint 224
Representation, complex conjugate 262
Representation, decomposable 217—218 339
Representation, finite-dimensional 218—219 227
Representation, irreducible 143 216—219 588
Representation, Lie’s theorems for 232—233
Representation, of -matrices (see “Gamma matrices realizations”)
Representation, ray (projective, “up to a factor”) 109—110 138—142 163-164
Representation, ray Real representation 501 528—529
Representation, unitary 215 216 218 219 226 “Star “Lorentz etc. representations”)
Resolution of identity 43
Resonances 406 441
Rest frame (see “Lorentz transformation into
Restriction 210
Retarded and advanced distributions 12 74—75 90—98 99 106 269—270 433 retarded “Smeared
Riemann — Lebesgue lemma 523
Riesz’s theorems 19 20 24 36 88 255
Rigged Hilbert space 12 32—34 39—44 105 109 114—118 157 194—199 240 256 space
Ring 115 585
Rivier, D. 465 673
Roberts, J. E. 599 600 640
Robinson, D. W. 332 352 353 625 641 656 667 668
Rohrlich, F. 2 460 468 629 639 668
Rollnik, H. 575 647
Rosen, L. 620 626 668
Rosenfeld, L. 350 637
Rotation group [SO(3)] 155—156 211 213 216 550
Rotation group [SO(3)], generators (see “Angular momentum”)
Rotation group [SO(3)], representations 156 240 242
Rotation group [SO(3)], structure constants, metric 226
Rue lie, D. 257 275 276 281 350 351 363 378 464 467 510 585 625 631 634 651 668
S (spaces of test functions) 11 23—25 29—30 32 46—48 73 105 287-288
S (spaces of test functions), -and 121
S (spaces of test functions), Fourier transforms 48 67—68
S-matrix (scattering matrix, scattering amplitude) 2—3 358—359 362 382—383 392 395—399 401 418-419 465
S-matrix (scattering matrix, scattering amplitude), Borchers classes and 474 520—525 575—576
S-matrix (scattering matrix, scattering amplitude), Born term 463
S-matrix (scattering matrix, scattering amplitude), covariant terms in 495—497
S-matrix (scattering matrix, scattering amplitude), general properties 404—407
S-matrix (scattering matrix, scattering amplitude), interpolating field for 513 517 524—525
S-matrix (scattering matrix, scattering amplitude), local properties 411—414
S-matrix (scattering matrix, scattering amplitude), nontrivial, in models 5 575—576 625- 626
S-matrix (scattering matrix, scattering amplitude), one-particle singularities 399
S-matrix (scattering matrix, scattering amplitude), polynomial boundedness 423
S-matrix (scattering matrix, scattering amplitude), relation to 4—point functions 436—437 562
S-matrix (scattering matrix, scattering amplitude), TCP and 514—517 610
S-matrix approach (see “BMP approach”)
S-operator (scattering operator) 3 359—361 380 401 403—417 422 430—432 442—443 450—453 461-462
S-operator (scattering operator) in Lagrangian formalism 413—414 451—453
S-operator (scattering operator) in terms of TCP operators 514—515
Salam, A. 242 468 575 655 668 669 672
Samoilenko, Yu. S. 271 669
Scalar field 250 263—264 269—271 275—276 283—284 287 294 363—368 381—384 402—404 465 552-556 612-620
Scalar field, algebra of 602—610 624
Scalar field, Borchers class 521—525 575 609
Scalar field, formed from derivatives 523
Scalar field, free 72 302—313 328 333—335 422 522—524 552—557 575 602-604 608 612—613 624
Scalar field, Lagrangian 557
Scalar field, retarded Green function 443—444
Scalar field, TVEVs 273—274 (see also “Particles scalar”)
Scalar produce(s) 15—16 19—20 38 138 139
Scalar produce(s) for spinor functions 188—190
Scalar produce(s) in 2-particle space 203—204
Scalar produce(s) in factor space 589
Scalar produce(s) in Fock space 194 208 331
Scalar produce(s) in n complex vectors 490—495
Scalar produce(s) in nuclear space 33
Scalar produce(s) in pseudo — Euclidean space 7 65 67 129—130
Scalar produce(s) in reconstruction theorem 295
Scalar produce(s) in rigged Hilbert space 115—116
Scalar produce(s), analytic function of 474 489—497
Scalar produce(s), distributions in 47—48 115—116
Scalar produce(s), in [representation of SL(2)] 2 565
Scattering generalized states and 114
Scattering theory 8 362 388 398 399 400—402 525 610—611 625 626 “LSZ “BMP “S—matrix”)
Schlieder, S. 258 292 350 351 605 667
Schmidt, W. 351 669
Schroedinger picture 137—138
Schroer, B. 258 259 350 351 352 428 466 523 575 609 624 634 638 650 657 669
Schur, I. 209
Schur’s lemma 218—219 242
Schwartz, J. T. 20 105 598 628
Schwartz, L. 31 46 48 74 105 106 631 669
Schweber, S. S. 2 8 170 171 241 335 352 422 460 631
Schwinger, J. 575 669
Second quantization 197—198 (see also “Fock space” “Scalar free” “Spinor free”)
Segal, I. E. 615 624 625 626 669 670
Seiler, R. 476 574 663
Self-adjoint element, of algebra 587—588 590 591 598
Self-adjoint operator (see “Linear operator self-adjoint”)
Self-adjoint representation 219
Self-dual representation 344—345
Self-energy 103 360 453—463 468 620
Seminorm 15
Semisimple algebra 223—225
Semisimple group 210 211 223—225
Separability 17 32
Separating vector 605—607
Separation axiom 212
Sesquilinearity 16
Several complex variables, functions of 467
Shapiro, Z. Ya 240 242 340 342 344 347 353 567 628
Shilov, G. E. 22 24 25 27 29 48 49 63 70 73 105 106 241 338 353 466 629 644
Shirkov, D. V. xviii 2 3 8 72 102 146 171 186 322 333 336 352 401 409 414 422 455 465 466 467 468 556 561 577 628 636 637
Shirokov, M. I. 205 242 575 640 670
Shirokov, Yu. M. 204 241 670—671
Sign function 79
Sikorski, R. 106 630
Simon, B. 31 106 469 671
Simple algebra 223
Simple group 210 211 224
Simply connected set 135
Single-particle states 193—196 200 205—208 311—312 362 368 379 407 442—443 610
Single-particle states, projection onto 363—364
Single-valuedness, of Wightman functions 264—265
SL(2) (special linear group, unimodular group) 110 131—137 158—159 240 241
SL(2) (special linear group, unimodular group), representations 144—145 168—176 188 247—251 337—349 353 482-483 528—529 564—570 578
Slash notation (p) 170—171 5-
Smeared products of fields 392—399
Smirnov, V. I. 226 481 491—492 631
Smith, L. 624 634
Smith, M. — S. B. 624 634
SO(2, 1) 156 162
SO(3, 2) 568—569 5
Sobolev, S. L. 105 671
Space reflection 130 136 146 154 164 169—170 176—179 191 319-327 475 496—497 562—563
Space reflection in homogeneous distribution formalism 343—344
Space reflection of V — A current 500
Space reflection, charge conjugation and 325—326
Space-time inversion 474 478 497 532— 533
Spacelike hull 606
Spacelike separation, notation 414 597
Special linear group (see “SL(2)”)
Spectral condition(s) 111 151—152 164 276 283 406 441—445 465 512 554—555 619
Spectral condition(s) for infinite-component field 566
Spectral condition(s) in algebraic approach 599 604—606 625
Spectral condition(s), advanced products and 399
Spectral condition(s), cluster decomposition property and 151
Spectral condition(s), generalized free field and 330
Spectral condition(s), ideal associated with 291—292
Spectral condition(s), strong (see “Mass gap”)
Spectral condition(s), weak 151 265
Spectral projections (spectral decomposition, spectral function) 42—43 114 252 590 603
Spectral representation (see “Kaellen — Lehmann representation”)
Spectral theorem 34—44 105
Spectrum, continuous 114 117
Spectrum, discrete 113—114
Spectrum, simple 152
Speer, E. R. 242 352 468 631 671
Spherical coordinates 80
Spherical functions, generalized 347—348
Ðåêëàìà