Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Introduction to Axiomatic Quantum Field Theory
Àâòîðû: Bogolubov N.N., Logunov A.A., Todorov I.T.
Àííîòàöèÿ: At the end of 1960 we made plans to write a monograph about the general principles of quantum field theory and their experimental implications. We intended primarily to give an account of the progress of the theory of dispersion relations since the appearance of the book of Bogolubov, Medvedev and Polivanov ([BMP]. As an introduction we wanted to include a review of the various approaches to axiomatic field theory. This introduction had to cover not only the formulation of Bogolubov, Medvedev and Polivanov, based on the apparatus of functional derivatives of the 5-matrix and the condition of microcausality, but also the field formulation associated with the names of Wightman, Haag, Lehmann, Symanzik, Zimmermann, and others. In the course of the work the tasks (and with them the size) of the introduction grew larger and larger, until eventually it developed into this book.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1975
Êîëè÷åñòâî ñòðàíèö: 707
Äîáàâëåíà â êàòàëîã: 18.04.2010
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Spherical harmonics 202
Spin 111 150 153—158 161 167 175 184 185 316 318 322
Spin affinors 174
Spin, discrete-transformation phase conventions and 326—327
Spin, higher 241—242 337 343—349 352 353 576
Spin, superselection rule 122 250—251
Spin, TCP and 515—516
Spin-and-statistics theorem 4 252 337 474—477 526—538 576
Spin-and-statistics theorem for parafields 545—547 576
Spin-and-statistics theorem, infinite-component counterexamples 564—566 577
Spin-and-statistics theorem, nonlocal counterexample 511—512
Spin-and-statistics theorem, TCP theorem and 513 538 572—573 574—575
Spinor field 179 250—252 264—265 281—282 319—327 402—404 527 534 620—623
Spinor field in algebraic approach 600—601
Spinor field in functional differentiation 408—409
Spinor field, charge conjugation phase convention 345
Spinor field, free 313—319
Spinor field, functions associated with [S(x), etc.] 315 318—319 322 335
Spinor field, gauge transformation 404—406
Spinor field, Lagrangian 557
Spinor field, TCP transformation 499—504
Spinor field, TVEVs and 273
Spinors 122 168—169 241 247
Spinors, discrete transformations and 169—170 176—180 182—184 187 191-192 319—327 352 501—504
Spinors, four-component (Dirac spinors, bispinors) 168—192 241 314 321 340—342 516 529
Spinors, indices (dotted, etc.) 168—169 482—483 501-504
Spinors, infinite-component 565
St rmer, E. 577 666
Stability, of vacuum and one-particle states 368 380 407 411 432 442—443 452
Stapp, H. P. 467 671
Star algebra (*-algebra) 584—585
Star isomorphism 587
Star representation (*-representation) 569
States, State vectors 109 112—128 137—138 142 591 610
States, State vectors in algebra (Cfc* ) 591—595 598
States, State vectors in free field theories 303 306—308 316
States, State vectors of generalized free field 331—332
States, State vectors, discrete transformations and 323—327
States, State vectors, extremal invariant 625
States, State vectors, mixed and pure 591
States, State vectors, physically realizable 122—128
States, State vectors, space of 112—128 242 379 618—619
Statistical mechanics 625
Statistics 526 539
Steinmann identities, Steinmann quartets 360 446—449 467
Steinmann, O. 392 446 464 466 467 651 671 672
Stieltjes integral 20 88
Stone, M. H. 609 672
Stora, R. 241 242 663
Stoyanov, D. Tz 341 342 353 577 672
Strathdee, J. 242 576 655 672
Streater, R. F. xvii 240 327 349 350 351 374 378 445 464 467 512 534 575 577 611 619 631 648 672 682
Strocchi, F. 562 577 642
Strong interactions 2 127—128 151—152 405—406 496 562
Strong topology (see “Convergence strong”)
Structure constants 222—226 230—233
Stueckelberg, E. C. G. 465 672 673
SU(2) (special unitary group) 134 144 155—156 213 216 224
SU(2) (special unitary group), isospin and 127—128 405
SU(2) (special unitary group), representations 156 158 340—341 550
SU(2, 2) 172
SU(N) 211
Subgroup 210
Sudarshan, E. C. G. 8 127 150 351 405 545 546 575 576 630 634 640 653 673
Sukhanov, A. D. 460 466 662 673
Summation convention 129
Superconductivity 577
Superposition principle 126
Superselection rule(s) 122—128 142 240 250—251 326 379 534 535 537 596 599 601
Superselection rule(s), charge 206—207 251 312
Superselection rule(s), noncommutative 127—128
Superselection rule(s), univalence (spin) 122 250—251 379 534
Superselection rules and 122 127—128 379
Support 23
Support of analytic functional 466
Support of distribution 49 424—428
Sushko, N. V. 577 673 679
Swieca, J. A. 259 380 573 650
Symanzik, K. 381 401 464 467 468 658 659 673
Symmetric operator (see “Linear operator symmetric”)
Symmetries 352 577
Symmetries of physical world 131 404—405 498—499
Symmetries unitary operators and 36 242 475 562—563 577 “Relativistic “Isotopic
Symmetries, broken 475 562—563
Symmetrization operator 197
Symplectic group 568—569
T-matrix 436 496—497
T-product (see “Time-ordered product”)
Tachyons 150
Tagamlitsky, Ya 106 673
Takahashi, Y. 576 655
Taylor series, as generalized function 425
Taylor, J. G. 467 638 576 643
TCP and spin-statistics not implied 610—611
TCP operator 298—299 322 474 498—504 511 514-519
TCP operator and 504 (see also “Lorentz group” “Relativistic
TCP operator in homogeneous distribution formalism 345 502
TCP theorem (TCP invariance) 4 337 474 476 498—504 512—518 538 574-575
TCP theorem (TCP invariance) for parafields 545—547
TCP theorem (TCP invariance), asymptotic states and 379
TCP theorem (TCP invariance), experimental verification 517 575
TCP theorem (TCP invariance), infinite-component counterexamples 567—573 578 610—611
TCP theorem (TCP invariance), scattering amplitudes and 436 514—517
TCP theorem (TCP invariance), spectral condition and 151
TCP theorem (TCP invariance), spin-statistics theorem and 513 538 572—575
TCP transformation of 498—504
Tempered distributions (S*) 11—12 27 33 40 46—48 55—56 58 60—65 73 85 105—106 422-423(see
Tempered distributions (S*), analytic functions and 106
Tempered distributions (S*), field matrix elements as 249 422—423
Tempered distributions (S*), Fourier transforms 48 68—69
Tempered distributions (S*), radiation operators and 412—413 423
Tempered distributions (S*), terminological convention 48
Tempered growth (see “Polynomial growth”)
Tempered sequences (Sf) 120
Tensor 122 247—250 344
Tensor field 250 252 264 270 499 501 527
Tensor product 196—197 206—207
Tensor, analytic function 481—486 492
Tensor, antisymmetric 342
Tensor, traceless symmetric 339—340
Tensor, under SL(2) (see “SL(2) representations”)
Test functions, space of (see “ ”)
Test functions, vector, tensor 248 261—262
Theta function 56—57 69 100—102 383 447—448 453 456 461
Theta function , projection operator 460—463
Theta function , smeared 392—394
Thirring, W., xviii 8 625 629 6 74
Three-particle space 152 204—205
Time reversal 110 164—165 177—178 180 191—192 241 320 322 323
Time reversal in homogeneous distribution formalism 343
Time reversal, charge conjugate spinor and 179
Time reversal, invariant distributions and 84—88
Time reversal, violation 498—499 (see also “Discrete transformations”)
Time-ordered product 3—4 359 382—383 396 464
Time-ordered product of currents 416—417
Time-ordered product, nomal product and 422
Time-ordered product, smeared 393—399
Time-ordered product, Wick 422
Timelike separation, notation 414
Titchmarsh, E. C. 523 632
Todorov, I. T., xvii 149 240 339 340 341 347 348 349 353 459 466 572 577 578 631—632 654 659 664 665 672 674
Toll, J. S. 510 545 576 634 655 659
Tolmachev, V. V. 577 628
Topological (continuous) group 212—214 242
Topology, topological space 18 22 24 25 28—29 212 586 598
Trace class 593 595
Trace of -matrix products 173
Trace of Pauli matrix products 134
Transformation law, of fields (see “Covariance of
Transition probabilities (see “Probability”)
Translation invariance 150 157 283 300 419 508 562 613 618
Translation invariance of state in 598—599
Translation invariance of TVEV 275
Translation invariance of Wightman functions 263 266—267
Translations 211 241 405 599
Transpose (transposition) 130
Tree, field-theory 620
Trivial (improper) subgroup 210
Trivial subspace 217
Trotter product formula 615
Trotter, H. F. 615 674
Truncated vacuum expectation value (TVEV) 272—281 374—378 386-388
Truncated vacuum expectation value (TVEV) of free fields 310
Tube 91 267 429 433 439—440 473—474 476 481—495 504—510 574
Tube, extended ( 3 473—474 481—489 493 504—510 574
Tube, permuted, symmetrized 505—510
TVEV (see “Truncated vacuum expectation value”)
Two-particle space 152 200—204
Two-point Function 269—270 284 286 337 363—364 532—533 553-554
Two-point function of free scalar field 99—100 309 334—336 363
Two-point function of free spinor field 318—319 335
Two-point function of generalized free field 330
Two-point function, covariant structure, and homogeneous distributions 345—349
Uhlmann, A. 241 352 658 674
Ultraviolet divergences 360—361 383 455 456 468 556 612 620
Umezawa, H. 242 352 466 543 632 655
Unbounded operator (see “Linear operator” “Domain of “Algebra of
Unimodular group (see SL(2))
Unit element 209 585 596
Unitarity, of S—matrix 2 407 411 417 428 515
Unitary operator (see “Linear operator unitary”)
Units, choice of 7
Univalence (see “Superselection rule univalence”)
Universal covering group (see “Covering group”)
Universal enveloping algebra 147 223
Uretsky, J. L. 465 667
V — A current 500—501
VACUUM 111 151—152 193 248 256 296 351 362 406 407 599 608 609 619
Vacuum energy 619
Vacuum expectation value (vev) 260 274 281 318 351
Vacuum expectation value (VEV) of commutator 330—331
Vacuum expectation value (VEV) of current 441—442
Vacuum expectation value (VEV) of parafields 546—547
Vacuum expectation value (VEV) of radiation operator 412—413
Vacuum expectation value (VEV) of T-product 382—383 395—396 464
Vacuum expectation value (VEV), TCP transformation of 503—504
Vacuum in Haag’s theorem 550—551 555 560- 561 613
Vacuum polarization 561
Vacuum, anisotropy of 508
Vacuum, not annihilated by local field 530—531
Vacuum, space reflection and 324—325
Vacuum, uniqueness 151 257 272 276 283 292—294 297—301 351 618 619
Variation, bounded and total 20
Variational derivative (see “Functional derivative”)
Vector field 250 423 561
Vector mesons 406
Vector potential 382
Vector space 13—14 584
Vector space, countably normed 21—29 105 115
Vector space, locally convex 598
Vector space, normed 13—21 105 “Nuclear
Vectors, notation 7 77
Vectors, representation of SL(2) 341—342 344
Vectors, state (see “States”)
Velocity-space nonoverlap condition 384—389 396—399
Vertex part 562
VEV (see “Vacuum expectation value”)
Vilenkin, N. Ya 31 32 42 105 106 269 339 340 353 577 628 629
Visconti, A. 242 352 632
Vladimirov, V. S. 75 96 106 332 353 429 445 467 508 509 574 575 632 637 675
Volkov, D. V. 576 675
Volume element, spherical coordinates 80
von Neumann algebra 4 582 584 587— 589 602—611 624
Von Neumann — Pontryagin — Montgomery theorem 214—215
von Neumann, J. 37 240 558 630 675
von Neumann’s theorem 558—559
w (see “Pauli — Lubanski — Bargmann vector”)
W (invariant of Poincare group) 148 150 156
Watson, K. M. 8 629
Wave equation of field 337
Wave equation of field, first-order scalar 576
Wave equation of field, fundamental solution 77—82
Wave equation of field, higher spin 241—242
Wave function 336
Wave operators 422 556
Weak commutativity 257 299
Weak equivalence 595
Weak interactions 500—501 562
Weak local commutativity (WLC) 474 510—513 517—521 546—547 575
Weak topology, see Convergence, weak Weyl relations 559 569
Weidlich, W. 577 675
Weinberg, S. 242 352 468 642 675
Wentzel, G. 250 549 576 632
Westwater, M. J. 468 675
Wick ordering, see Normal product Wick polynomial 522—524 608—609
Wick, G. C. 205 240 242 327 652 658 675 676
Wick’s theorem 422
Wiener, N. 427 631
Wightman approach 3 243—301 350—353 362—363 399 575 582 607
Wightman functional 287—301
Wightman functions 246 260—286 287 291—292 351—352 464 487 562
Wightman functions and 265—268
Wightman functions in Haag’s theorem 552—554
Wightman functions of free fields 309—310 313 318—319
Wightman functions of infinite-component field 571
Wightman functions, analyticity 267—268 473 476 487 504—510
Wightman functions, charge conservation and 313
Wightman functions, gauge transformation and 311
Wightman functions, space-time inversion and 532—533
Wightman, A. S. xvii 3 134 162 165 195 204 205 240 241 242 260 276 283 327 332 350 351 352 445 467 481 489 492 510 512 534 552 561 574 575 576 577 605 606 609 624 625 631 644 650 653 655 676 677 682
Wigner, E. P. 138 140 156 158 162 195 240 241 242 479 576 632 635 664 676 677 678
Wigner’s theorem 139 234—239 242
Williams, D. N. 486 574 663
Wilner, M. 468 639 668
Winogradzki, J. 241 678
Wizimirski, Z. 283 351 678
WLC (see “Local commutativity”)
WLC and 510—512
Wray, J. G. 468 668 678
Wu, C. S. 575 658
Yaglom, A. M. 242 252 577 645
Yang — Feldman equations 358 382 383 390—392 415 417—419 464
Yang, C. N. 464 517 575 658 679
Yndurain, F. J. 539 576 644
Young patterns 526
Yukawa potential 281
Yukawa theory 453—463 620—623 626
Zaikov, R. P. 353 674
Zav’yalov, O. I. 577 673 679
Zhelobenko, D. P. 242 632
Zimmermann, W. 381 401 464 465 467 468 607 625 638 645 658 659 679
Zumino, B. 576 660
“Almost everywhere” 47
Ðåêëàìà