Авторизация
Поиск по указателям
Boas R.P. — A Primer of Real Functions
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: A Primer of Real Functions
Автор: Boas R.P.
Аннотация: This is a revised, updated and significantly augmented edition of a classic Carus Monograph (a bestseller for over 25 years) on the theory of functions of a real variable. Earlier editions of this classic covered sets, metric spaces, continuous functions, and differentiable functions. The greatly expanded fourth edition adds sections on measurable sets and functions, the Lebesgue and Stieltjes integrals, and applications.
The book retains the informal, chatty style of the previous editions, remaining accessible to readers with some mathematical sophistication and a background in calculus. The book is thus suitable either for self-study or for supplemental reading in a course on advanced calculus or real analysis.
Not intended as a systematic treatise, this book has more the character of a sequence of lectures on a variety of interesting topics connected with real functions. Many of these topics are not commonly encountered in undergraduate textbooks: for example, the existence of continuous everywhere-oscillating functions (via the Baire category theorem); the universal chord theorem; two functions having equal derivatives, yet not differing by a constant; and application of Stieltjes integration to the speed of convergence of infinite series.
This book recaptures the sense of wonder that was associated with the subject in its early days. A must for your mathematics library.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: Fourth Edition
Год издания: 1996
Количество страниц: 314
Добавлена в каталог: 11.04.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
110 112
23 24 43
110 see
14 120 183 240 264
, 140
, 107
, , , 139
91
24
221—224
25 109
217
24 43 44
197
23
, compact subsets 45 49 51
, complete 57
, connected 32 35
, density in 172—173
, measure in 73 199
, separable 43
, uncountable 15
-function 228
240
172
14 20 237
Abel, Niels Henrik 121 123
Abel, Niels Henrik, convergence test 233
Absolute continuity 204—205
Absolute continuity, of an integral 210 212 216
Absolute convergence 209
Accuracy, numerical 237 242—244
Aczel, Janos 186
Aggregate 2
Agnew, Ralph Palmer 139
Airline space 23
Algebra, fundamental theorem of 59
Algebraic numbers 11—15
Algorithms 21
Almost everywhere 74
Almost everywhere, continuous 206 274
Almost everywhere, convergence 220 221
Almost everywhere, differentiability 155 165—170 204 214 215
Almost everywhere, finite 210
Almost everywhere, limit of continuous functions 202
Almost everywhere, zero derivative 160—164 204 205
Almost uniform convergence 202
Alphabet 3
Alsina, James 122
Alternating Series Test 233
Ampere, Andre Marie 103
Analytic function 47 69 189—192
Antecedent 19
Antiderivative 66 195 206 242
Antipodal points 100—102
antisymmetric 238 279
Apostol, Tom M. 228
Approximation by nonmonotonic functions 70
Approximation by open and closed sets 197—198
Approximation by polygonal functions 128
Approximation by polynomials 128—132
Approximation by rational numbers 75
Approximation by step functions 128
Approximation of a numerical series 237—243
Approximation of an integral 229—230
Approximation of continuous functions 126—132
Approximation of power series by partial sums 47
Arbitrary functions 84—85 87 154—155
Arbitrary shape 101
Arithmetic 7 242 246
Arithmetic mean 181—183
Austin, Donald G. 175
automobile 202
Average 136 181 215 220
Axiom of Choice xi 200
Aziz, Abdul Kadir 156
B 25 44 47 127
Baire category see “Category”
Baire class 125 201—202
Baire measure 236
Baire, Rene 125 126
Baire’s theorem 61—72 123—126 192
Baker, Richard L. xii
Balaguer, Ferran Sunyer i 72
Bamon, Rodrigo 138
Banach — Tarski paradox 200
Banach, Stefan 72 200
Bartle, Robert G. 205
Base 2 expansion 40—42 115—116 152 161—163
Base 3 expansion see “Base 2 expansion”
Basis, Hamel 138
Beckenbach, Edwin F. 186
Beekmann, Wolfgang 61
Beesley, E. Maurice xii 158
Bellman, Richard 186
Benavides, Tomas Dominguez 75
Bernoulli numbers 241—242
Bernoulli polynomials 241
Bernstein equivalence theorem see “Schroeder — Bernstein theorem”
Bernstein, Felix 21
Bernstein, Sergei 191
Bernstein’s theorem on analytic functions 191—192
Besicovitch, Abram Samoilovitch 73
Bessel’s inequality 222
Bibliography of bibliographies 4
Bicompactness 48
Big game hunting 52
Billions 14 237
Binary expansion see “Base 2 expansion”
Binomial theorem 191 264
biology 44
Bird trap 46
Bisecting areas and volumes 101—102
Bisection method 46—47
Block of digits 244
Blumberg, H. 90
Boas, Anne Louise vii
Boas, Harold Philip vii xii
Boas, Mary Elizabeth Layne xi
Boas, Ralph Layne vii
Boas, Ralph Philip vii 157 192 193 243 244
Boghossian, Artin B. 72
Bolzano — Weierstrass theorem 45—48 50 59 60 91
Bonnet’s theorem 231
Borel, Emile 193
Borel, Emile, measure 236
Borel, Emile, sets 198 272
Borsuk’s theorem 100 101
Borwein, Jonathan M. and Peter B. 21
Bose Majumder, N.C. 138
Botsko, Michael W. 158 210
Bottazzini, Umberto 111
Bound, of derivates 150—151
Bound, positive lower 89
Boundary 27
Boundary, empty 28
Boundary, is closed 30
Boundary, nonempty 35
Boundary, of boundary 28
Boundary, of complement 28
Boundary, of neighborhood 28
Boundary, point 27
Bounded, above 5
Bounded, convergence 111
Bounded, convergence theorem 213
Bounded, derivative 70
Bounded, functional 234
Bounded, functions 25 110—112 209
Bounded, functions, continuous 45 46 48 89
Bounded, functions, not separable 44
Bounded, partial sums 233
Bounded, sequences 24 43 44
Bounded, set 7 26
Bounded, variation 203—204 216 226 228 230 234
Bourbaki, Nicolas 2
Box of maximum volume 182
Brennan, J.G. 104
Briggs, James M. 200
Bromwich, Thomas John l’Anson 123
Brown, Johnny M. 138
Brownian motion 72
Bruckner, Andrew M. xii 90 155 158
Buck, Ellen F. and Robert Creighton xi
Bunyakovsky, Victor Ya. 185
Burckel, Robert B. viii 156 186
C 24 see
C(E) 3
Calculation of 21
Calculator 242
Cantor function 161—163 204 216
Cantor function, characterization of 174
Cantor function, integral of 208
Cantor set 39—42 44
Cantor set, arithmetical description 41
Cantor set, distance property 134
Cantor set, first category 64
Cantor set, generalized 74—75 206
Cantor set, irrational points of 42
Cantor set, limit points of 39 40 44
Cantor set, measure zero 74 196
Cantor set, nowhere dense 40
Cantor set, uncountable 41 65
Cantor teepee 42
Cantor’s nested set theorem 62—63
Caratheodory’s criterion 198 200
Cardinality 8—20
Cargo, Gerald T. xii 157
Carroll, Francis W. 126
Cartan, Henri 193
Cartesian product 79
Catching a lion 46
Category 63—65
Category, for differentiate functions 70—72 193
Category, of level sets 152—153
Category, of points of discontinuity 125—126
Cater, Frank S. 76 174 193
Cauchy sequence 55—58 62 108 110 222 223
Cauchy, Augustin-Louis 108
Cauchy, Augustin-Louis, error of 108 121
Cauchy’s inequality 185 186
Center of gravity 180 193
Cetkovic, S. 157
Chain of elements 18—19
Chain rule 141
Chalice, Donald R. 174
Change of variable 261 268
Characterization of bounded set 7
Characterization of Cantor function 174
Characterization of continuous functions 92
Characterization of linear functional 236
Characterization of polynomials 67—69
Checkerboard 135
Chinn, William G. 104
Chittenden, Edward W. 103
chords 96—100 144 175—180
Chudnovsky, David V. and Gregory V. 21
Civin, Paul 103
Clark, H.M. xi
class 2
Class, Baire 125 201—202
Clavius 200
clock 100
Closed interval 6 24 28 72
Closed sets 25—37
Closed sets, alternative definitions 29
Closed sets, approximation by 196—198
Closed sets, compact 49
Closed sets, complements of 29
Closed sets, contain limit points 29
Closed sets, intersections of 36—37
Closed sets, level sets 30
Closed sets, measure of 196
Closed sets, nowhere dense 38
Closed sets, of measure zero 174
Closed sets, unions of 36—37
Closure 35—36
Closure, diameter of 61
Closure, of neighborhood 37
Cluster point 29
Cobb, John 44
Coffee 102
Cohen, Paul J. xi
Collection 1 2
Common error 151
Compact set 48—52
Compact set, closed subset of 49
Compact set, continuous function on 48—49 57 91—93 100 109 112 126—132
Compact set, distance attained for 60—61
Compact set, largest element 59
Competent analyst 186
Complement 3
Complement, boundary of 28
complete 56—58 64 112 222—224
Completion 56
Computation 21 237—243
Computer 20 21 195 203 237 243
Concave 180 181 184
Condensation of singularities 114
Confusion 86 91 108 208 229
Conjecture 160
Connected set 32—35
Connected set, 35 117
Connected set, 35
Connected set, continuous function on 92
Connectedness: intrinsic property 34
Consonant 3
Constant function 78
Constant, Euler’s 240
Contain 1 2
continuous curve 114—117
Continuous functions 24—25 83—89
Continuous functions, absolutely 204—205 216
Continuous functions, almost everywhere 206 274
Continuous functions, approximation of 126—132
Continuous functions, at most two-to-one 95—96
Continuous functions, bounded 45 89
Continuous functions, completeness of 112
Continuous functions, convex 175 177
Continuous functions, definitions 85—88
Continuous functions, determined by moments 131—132
Continuous functions, differentiable 140 151
Continuous functions, equivalence of definitions 88—89
Continuous functions, everywhere oscillating 69—70
Continuous functions, fixed points 100
Continuous functions, graphs 85
Continuous functions, intermediate value property 84 92
Continuous functions, limits of 202
Continuous functions, linear 133—134
Continuous functions, linear functionals on 233—236
Continuous functions, maxima 45—46 48—49 92 142
Continuous functions, measurable 201
Continuous functions, neighborhood in space of 26
Continuous functions, nondifferentiable 70—72 153
Continuous functions, of bounded variation 204
Continuous functions, on compact sets 127
Continuous functions, periodic 97—98
Continuous functions, pointwise convergence 109
Continuous functions, pointwise limits 123—126
Continuous functions, positive lower bound 89
Continuous functions, properties of 90—102
Реклама