Авторизация
Поиск по указателям
Boas R.P. — A Primer of Real Functions
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: A Primer of Real Functions
Автор: Boas R.P.
Аннотация: This is a revised, updated and significantly augmented edition of a classic Carus Monograph (a bestseller for over 25 years) on the theory of functions of a real variable. Earlier editions of this classic covered sets, metric spaces, continuous functions, and differentiable functions. The greatly expanded fourth edition adds sections on measurable sets and functions, the Lebesgue and Stieltjes integrals, and applications.
The book retains the informal, chatty style of the previous editions, remaining accessible to readers with some mathematical sophistication and a background in calculus. The book is thus suitable either for self-study or for supplemental reading in a course on advanced calculus or real analysis.
Not intended as a systematic treatise, this book has more the character of a sequence of lectures on a variety of interesting topics connected with real functions. Many of these topics are not commonly encountered in undergraduate textbooks: for example, the existence of continuous everywhere-oscillating functions (via the Baire category theorem); the universal chord theorem; two functions having equal derivatives, yet not differing by a constant; and application of Stieltjes integration to the speed of convergence of infinite series.
This book recaptures the sense of wonder that was associated with the subject in its early days. A must for your mathematics library.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: Fourth Edition
Год издания: 1996
Количество страниц: 314
Добавлена в каталог: 11.04.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Continuous functions, ranges of 93
Continuous functions, represented by formulas 82
Continuous functions, separable space 43
Continuous functions, two-to-one 94—95
Continuous functions, uniform continuity 127
Continuous functions, uniform convergence 110—122
Continuous functions, velocity 156
Continuous functions, with connected domains 92
Continuous functions, with continuous inverse 91
Continuous functions, with equal derivatives 164—165
Continuous functions, with infinite derivative 151
Continuous functions, with zero derivative 161—163
Continuous on the right 87 140
Continuum Hypothesis 210
Convergence 52—61
Convergence, Abel’s test 233
Convergence, absolute 209
Convergence, almost uniform 202
Convergence, bounded 111 213
Convergence, dominated 212
Convergence, Fatou’s lemma 213
Convergence, integral test 220
Convergence, mean square 222
Convergence, monotone 214
Convergence, necessary condition 183
Convergence, of derivatives 145—147 171—172
Convergence, of monotonic functions 159
Convergence, of sequences and series 52—56 237—243
Convergence, of sequences of functions 108—111
Convergence, of Taylor series 189—192
Convergence, pointwise 108—109
Convergence, radius of 192
Convergence, uniform 110—122
Convex, curves 102
Convex, functions 175—186 200
Convex, pancakes 102
Convex, strictly 180
Cooke, Roger L. 200
coordinates 17
Copson, Edward Thomas 52 61
Corominas, Ernest 72
Countable sets 8—20
Countable sets, algebraic numbers 11
Countable sets, dense 42
Countable sets, disjoint intervals 30
Countable sets, integers 9
Countable sets, jumps of monotonic functions 159
Countable sets, lattice points 10
Countable sets, measure zero 74
Countable sets, polynomials 11 43
Countable sets, proper maxima 142
Countable sets, rational numbers 11
Countable sets, subsets 10
Countable sets, union of 10 11
Countably additive 198
Countably infinite 9
Counting 8
Covering 2 48—52 73 172
Cox, Raymond H. 21
Cross section 166
Cross-shaped sets 134
Cup of coffee 102
Curve, area under 195
Curve, continuous 114—117
Curve, convex 102 179
Curve, space-filling 114
Cusp 71
Darboux functions 90
Darboux, Gaston 89
Darst, Richard B. 158 193
De La Vallee Poussin, Charles Jean 126
Decimals 12—15 17—20 40—42 84 237
Decomposition of a closed interval 72
Decreasing function 158
Denjoy, Arnaud 72
Dense sets 38—44
Density, point of 172
Derivates 139—155
Derivates, at a maximum 142
Derivates, bounds of 150
Derivates, continuous 151
Derivates, infinite 152
Derivates, mean—value theorem 149
Derivates, nonnegative 150
Derivates, of arbitrary function 155
Derivates, of continuous function 149—151
Derivates, of discontinuous function 150 152
Derivates, of sums 140
Derivates, zero 154
derivatives 66 139—155
Derivatives, at maximum 142
Derivatives, behave worse 148
Derivatives, bounded 70
Derivatives, cannot jump 151
Derivatives, chain rule 141
Derivatives, continuous 118
Derivatives, discontinuous 151
Derivatives, finite 154 215
Derivatives, Fubini’s theorem 171
Derivatives, infinite 140 151 174
Derivatives, integrals of 215—216
Derivatives, integration by parts 228
Derivatives, intermediate values 100 143
Derivatives, level sets 152
Derivatives, limits of 151 187
Derivatives, nonexistent 70—72 153 154
Derivatives, nonnegative 149 191
Derivatives, not everywhere infinite 151
Derivatives, not integrable 119 215
Derivatives, of composite function 141
Derivatives, of convex functions 177
Derivatives, of delta function 228
Derivatives, of fixed sign 191
Derivatives, of infinite order 118
Derivatives, of integrals 214—215
Derivatives, of jump function 161
Derivatives, of monotonic functions 165—170
Derivatives, of periodic function 143
Derivatives, of sequence 119 145—147
Derivatives, of series 171—172
Derivatives, positive 141
Derivatives, product of 155
Derivatives, range of 143—145
Derivatives, right-hand 140
Derivatives, zero 67 142 160—164 204
Desert, Sahara 46
DeTemple, Duane W. 244
Determinant 135
Devlin, Keith 21
Diameter 50 59—61
Diamond, Harvey 75
Diaz, Joaquin Basilio 103 156 157
Dieudonne, Jean Alexandre 156
Difference quotient 68 143—145 150 178—179
Differences 133 199
Differentiation see “Derivatives”
Dilation 199
Dini derivates see “Derivatives”
Dini, Ulisse 155
Dini’s theorem 112 122
Disconnected, totally 42
discontinuous functions 87 112 226
Discontinuous functions, examples 84 85 108 125 133 150 151 159
Discontinuous functions, properties 89 93 114 123 125 151 153 175
Discontinuous functions, with infinite derivative 140
dishes 2
Disjoint 3
Disk 11 25
Dispersion point 33
Distance 21—25
Distance, as continuous function 88
Distance, between sets 61
Distance, from point to set 88 173
Distributions 228
diverge 54
Divergent Taylor series 189—190
Divide et impera 264
Domain 77
Dominate 211
Dominated convergence 212
Dot product 221
Drobot, Vladimir 156
Duality 75 234
Dutch 225
Egoroff’s theorem 202 205 212
Egorov’s theorem see “Egoroff’s theorem”
Element 1 2
Elements of Euclid 200
Empty set 2
Empty set, bounds of 8
Empty set, countable 9
Empty set, is open and closed 28
Engine 202
English words 4
Ensemble 2
Equations defining functions 78 82
Equilateral triangle 255
Equivalence class 210 217
Equivalence theorem 21
Erdos, Paul 157 175
Ergodic theorem 202
Erratic clock 262
Error 108 151 238 243
Essential supremum 218
Euclid 200
Euler — Maclaurin formula 239—243
Euler’s constant 240
Everywhere dense 38
exception 80 141 155 166
Existence proof 14 72
Expansion, formal 221
Expectation 224
Exponential function 118 120 190 191
Extremal problems 182
Factor, prime 82
Fallacious proof 15 141
Fast, Henryk 90
Fatou’s Lemma 213 223 276
Fence 46
Field 79
Filipczak, F.M. 157
Finite, sequence 53
Finite, set 9 16
Finite, subsets 12
Fink, Arlington M. 186
First category 64 73
First category, analytic functions are set of 193
First category, but not measure zero 74
First category, countable set need not be 64
First category, differentiable functions form set of 70
First category, duality with measure zero 75
First category, of level sets 152
First category, points of discontinuity form set of 125 153
Fischer, Ernst 222 224
Fixed fraction 75 169 172
Fixed-point theorem 100 102
Flett, Thomas Muirhead 103 156
Flowing water lemma 166
Folland, Gerald B. 229
Formal expansion 221
formulas 81—82
Fort, Marion Kirkland, Jr. 157
Fort’s theorem 153—154 157
Fourier series 221 225 231
Fourteenth century 256
Fox, William C. 52
Frank, Alan 20
Freilich, Gerald 174
French language 2 123
French mathematician 229
French, Robert M. 200
Frong 4
Frontier point 27
Frullani integrals 139
Fubini’s Theorem 164 171 173 175 215
Functional 233—236
Functional analysis 207
Functions 77—83
Functions, absolutely continuous 204—205
Functions, abstract definition 77—79
Functions, analytic 47 69 189—192
Functions, approximation of 47
Functions, arbitrary 84—85 87 154—155
Functions, Baire classes 125 201—202
Functions, bounded 25 44—46 48 111 209
Functions, cardinality of set of 17
Functions, constant 78
Functions, continuous 83—102 123—132
Functions, convex 175—186
Functions, Darboux 84
Functions, defined by equations 78
Functions, defined by formulas 81—82
Functions, delta 228
Functions, differentiable 139—155
Functions, discontinuous 84 86 87 89 93 112 114 123—126 133 140 150 153 175
Functions, distance 22
Functions, generalized 140 228
Functions, greatest integer 158 227 238 277
Functions, identity 81
Functions, infinitely differentiate 118 120 186—192
Functions, integrate 202 206 208—210
Functions, inverse 91
Functions, jump 160
Functions, linear 132—138
Functions, measurable 201—205
Functions, monotonic 113 141 155 158—174
Functions, multiple—valued 77
Functions, nondifferentiable 70—72 153
Functions, notations for 80—81
Functions, of a real variable 79
Functions, one-to-one 91 94
Functions, orthogonal 221—224
Functions, oscillating 69—70
Functions, oscillating differentiate 70
Functions, periodic 97—98 143 238 240
Functions, polygonal 127 128
Functions, restriction of 86—87
Functions, ruler 85 154 158 218
Functions, saw-tooth 70
Functions, sequences of 108—111
Functions, sine 182
Functions, singular 161—164 174 204
Functions, spaces of 24—25
Functions, step 127 128 214 226 276
Functions, strictly monotonic 94
Functions, tangent 247 270
Functions, two-to-one 94
Functions, univalent 91
Functions, wiggly 70
Functions, with equal derivatives 154 164—165
Fundamental theorem of algebra 59
Fundamental theorem, of calculus 195 214
Galilei, Galileo 156
Game 52
Garg, Krishna Murari 157
Gelbaum, Bernard R. 72
Gelles, Gregory 75
Generalized, Cantor set 74—75 206
Generalized, function 140 228
Geometric mean 181—183
Реклама