Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Boas R.P. — A Primer of Real Functions
Boas R.P. — A Primer of Real Functions



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: A Primer of Real Functions

Автор: Boas R.P.

Аннотация:

This is a revised, updated and significantly augmented edition of a classic Carus Monograph (a bestseller for over 25 years) on the theory of functions of a real variable. Earlier editions of this classic covered sets, metric spaces, continuous functions, and differentiable functions. The greatly expanded fourth edition adds sections on measurable sets and functions, the Lebesgue and Stieltjes integrals, and applications.

The book retains the informal, chatty style of the previous editions, remaining accessible to readers with some mathematical sophistication and a background in calculus. The book is thus suitable either for self-study or for supplemental reading in a course on advanced calculus or real analysis.

Not intended as a systematic treatise, this book has more the character of a sequence of lectures on a variety of interesting topics connected with real functions. Many of these topics are not commonly encountered in undergraduate textbooks: for example, the existence of continuous everywhere-oscillating functions (via the Baire category theorem); the universal chord theorem; two functions having equal derivatives, yet not differing by a constant; and application of Stieltjes integration to the speed of convergence of infinite series.

This book recaptures the sense of wonder that was associated with the subject in its early days. A must for your mathematics library.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Fourth Edition

Год издания: 1996

Количество страниц: 314

Добавлена в каталог: 11.04.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Continuous functions, ranges of      93
Continuous functions, represented by formulas      82
Continuous functions, separable space      43
Continuous functions, two-to-one      94—95
Continuous functions, uniform continuity      127
Continuous functions, uniform convergence      110—122
Continuous functions, velocity      156
Continuous functions, with connected domains      92
Continuous functions, with continuous inverse      91
Continuous functions, with equal derivatives      164—165
Continuous functions, with infinite derivative      151
Continuous functions, with zero derivative      161—163
Continuous on the right      87 140
Continuum Hypothesis      210
Convergence      52—61
Convergence, Abel’s test      233
Convergence, absolute      209
Convergence, almost uniform      202
Convergence, bounded      111 213
Convergence, dominated      212
Convergence, Fatou’s lemma      213
Convergence, integral test      220
Convergence, mean square      222
Convergence, monotone      214
Convergence, necessary condition      183
Convergence, of derivatives      145—147 171—172
Convergence, of monotonic functions      159
Convergence, of sequences and series      52—56 237—243
Convergence, of sequences of functions      108—111
Convergence, of Taylor series      189—192
Convergence, pointwise      108—109
Convergence, radius of      192
Convergence, uniform      110—122
Convex, curves      102
Convex, functions      175—186 200
Convex, pancakes      102
Convex, strictly      180
Cooke, Roger L.      200
coordinates      17
Copson, Edward Thomas      52 61
Corominas, Ernest      72
Countable sets      8—20
Countable sets, algebraic numbers      11
Countable sets, dense      42
Countable sets, disjoint intervals      30
Countable sets, integers      9
Countable sets, jumps of monotonic functions      159
Countable sets, lattice points      10
Countable sets, measure zero      74
Countable sets, polynomials      11 43
Countable sets, proper maxima      142
Countable sets, rational numbers      11
Countable sets, subsets      10
Countable sets, union of      10 11
Countably additive      198
Countably infinite      9
Counting      8
Covering      2 48—52 73 172
Cox, Raymond H.      21
Cross section      166
Cross-shaped sets      134
Cup of coffee      102
Curve, area under      195
Curve, continuous      114—117
Curve, convex      102 179
Curve, space-filling      114
Cusp      71
Darboux functions      90
Darboux, Gaston      89
Darst, Richard B.      158 193
De La Vallee Poussin, Charles Jean      126
Decimals      12—15 17—20 40—42 84 237
Decomposition of a closed interval      72
Decreasing function      158
Denjoy, Arnaud      72
Dense sets      38—44
Density, point of      172
Derivates      139—155
Derivates, at a maximum      142
Derivates, bounds of      150
Derivates, continuous      151
Derivates, infinite      152
Derivates, mean—value theorem      149
Derivates, nonnegative      150
Derivates, of arbitrary function      155
Derivates, of continuous function      149—151
Derivates, of discontinuous function      150 152
Derivates, of sums      140
Derivates, zero      154
derivatives      66 139—155
Derivatives, at maximum      142
Derivatives, behave worse      148
Derivatives, bounded      70
Derivatives, cannot jump      151
Derivatives, chain rule      141
Derivatives, continuous      118
Derivatives, discontinuous      151
Derivatives, finite      154 215
Derivatives, Fubini’s theorem      171
Derivatives, infinite      140 151 174
Derivatives, integrals of      215—216
Derivatives, integration by parts      228
Derivatives, intermediate values      100 143
Derivatives, level sets      152
Derivatives, limits of      151 187
Derivatives, nonexistent      70—72 153 154
Derivatives, nonnegative      149 191
Derivatives, not everywhere infinite      151
Derivatives, not integrable      119 215
Derivatives, of composite function      141
Derivatives, of convex functions      177
Derivatives, of delta function      228
Derivatives, of fixed sign      191
Derivatives, of infinite order      118
Derivatives, of integrals      214—215
Derivatives, of jump function      161
Derivatives, of monotonic functions      165—170
Derivatives, of periodic function      143
Derivatives, of sequence      119 145—147
Derivatives, of series      171—172
Derivatives, positive      141
Derivatives, product of      155
Derivatives, range of      143—145
Derivatives, right-hand      140
Derivatives, zero      67 142 160—164 204
Desert, Sahara      46
DeTemple, Duane W.      244
Determinant      135
Devlin, Keith      21
Diameter      50 59—61
Diamond, Harvey      75
Diaz, Joaquin Basilio      103 156 157
Dieudonne, Jean Alexandre      156
Difference quotient      68 143—145 150 178—179
Differences      133 199
Differentiation      see “Derivatives”
Dilation      199
Dini derivates      see “Derivatives”
Dini, Ulisse      155
Dini’s theorem      112 122
Disconnected, totally      42
discontinuous functions      87 112 226
Discontinuous functions, examples      84 85 108 125 133 150 151 159
Discontinuous functions, properties      89 93 114 123 125 151 153 175
Discontinuous functions, with infinite derivative      140
dishes      2
Disjoint      3
Disk      11 25
Dispersion point      33
Distance      21—25
Distance, as continuous function      88
Distance, between sets      61
Distance, from point to set      88 173
Distributions      228
diverge      54
Divergent Taylor series      189—190
Divide et impera      264
Domain      77
Dominate      211
Dominated convergence      212
Dot product      221
Drobot, Vladimir      156
Duality      75 234
Dutch      225
Egoroff’s theorem      202 205 212
Egorov’s theorem      see “Egoroff’s theorem”
Element      1 2
Elements of Euclid      200
Empty set      2
Empty set, bounds of      8
Empty set, countable      9
Empty set, is open and closed      28
Engine      202
English words      4
Ensemble      2
Equations defining functions      78 82
Equilateral triangle      255
Equivalence class      210 217
Equivalence theorem      21
Erdos, Paul      157 175
Ergodic theorem      202
Erratic clock      262
Error      108 151 238 243
Essential supremum      218
Euclid      200
Euler — Maclaurin formula      239—243
Euler’s constant      240
Everywhere dense      38
exception      80 141 155 166
Existence proof      14 72
Expansion, formal      221
Expectation      224
Exponential function      118 120 190 191
Extremal problems      182
Factor, prime      82
Fallacious proof      15 141
Fast, Henryk      90
Fatou’s Lemma      213 223 276
Fence      46
Field      79
Filipczak, F.M.      157
Finite, sequence      53
Finite, set      9 16
Finite, subsets      12
Fink, Arlington M.      186
First category      64 73
First category, analytic functions are set of      193
First category, but not measure zero      74
First category, countable set need not be      64
First category, differentiable functions form set of      70
First category, duality with measure zero      75
First category, of level sets      152
First category, points of discontinuity form set of      125 153
Fischer, Ernst      222 224
Fixed fraction      75 169 172
Fixed-point theorem      100 102
Flett, Thomas Muirhead      103 156
Flowing water lemma      166
Folland, Gerald B.      229
Formal expansion      221
formulas      81—82
Fort, Marion Kirkland, Jr.      157
Fort’s theorem      153—154 157
Fourier series      221 225 231
Fourteenth century      256
Fox, William C.      52
Frank, Alan      20
Freilich, Gerald      174
French language      2 123
French mathematician      229
French, Robert M.      200
Frong      4
Frontier point      27
Frullani integrals      139
Fubini’s Theorem      164 171 173 175 215
Functional      233—236
Functional analysis      207
Functions      77—83
Functions, absolutely continuous      204—205
Functions, abstract definition      77—79
Functions, analytic      47 69 189—192
Functions, approximation of      47
Functions, arbitrary      84—85 87 154—155
Functions, Baire classes      125 201—202
Functions, bounded      25 44—46 48 111 209
Functions, cardinality of set of      17
Functions, constant      78
Functions, continuous      83—102 123—132
Functions, convex      175—186
Functions, Darboux      84
Functions, defined by equations      78
Functions, defined by formulas      81—82
Functions, delta      228
Functions, differentiable      139—155
Functions, discontinuous      84 86 87 89 93 112 114 123—126 133 140 150 153 175
Functions, distance      22
Functions, generalized      140 228
Functions, greatest integer      158 227 238 277
Functions, identity      81
Functions, infinitely differentiate      118 120 186—192
Functions, integrate      202 206 208—210
Functions, inverse      91
Functions, jump      160
Functions, linear      132—138
Functions, measurable      201—205
Functions, monotonic      113 141 155 158—174
Functions, multiple—valued      77
Functions, nondifferentiable      70—72 153
Functions, notations for      80—81
Functions, of a real variable      79
Functions, one-to-one      91 94
Functions, orthogonal      221—224
Functions, oscillating      69—70
Functions, oscillating differentiate      70
Functions, periodic      97—98 143 238 240
Functions, polygonal      127 128
Functions, restriction of      86—87
Functions, ruler      85 154 158 218
Functions, saw-tooth      70
Functions, sequences of      108—111
Functions, sine      182
Functions, singular      161—164 174 204
Functions, spaces of      24—25
Functions, step      127 128 214 226 276
Functions, strictly monotonic      94
Functions, tangent      247 270
Functions, two-to-one      94
Functions, univalent      91
Functions, wiggly      70
Functions, with equal derivatives      154 164—165
Fundamental theorem of algebra      59
Fundamental theorem, of calculus      195 214
Galilei, Galileo      156
Game      52
Garg, Krishna Murari      157
Gelbaum, Bernard R.      72
Gelles, Gregory      75
Generalized, Cantor set      74—75 206
Generalized, function      140 228
Geometric mean      181—183
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте