Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Boas R.P. — A Primer of Real Functions
Boas R.P. — A Primer of Real Functions



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: A Primer of Real Functions

Автор: Boas R.P.

Аннотация:

This is a revised, updated and significantly augmented edition of a classic Carus Monograph (a bestseller for over 25 years) on the theory of functions of a real variable. Earlier editions of this classic covered sets, metric spaces, continuous functions, and differentiable functions. The greatly expanded fourth edition adds sections on measurable sets and functions, the Lebesgue and Stieltjes integrals, and applications.

The book retains the informal, chatty style of the previous editions, remaining accessible to readers with some mathematical sophistication and a background in calculus. The book is thus suitable either for self-study or for supplemental reading in a course on advanced calculus or real analysis.

Not intended as a systematic treatise, this book has more the character of a sequence of lectures on a variety of interesting topics connected with real functions. Many of these topics are not commonly encountered in undergraduate textbooks: for example, the existence of continuous everywhere-oscillating functions (via the Baire category theorem); the universal chord theorem; two functions having equal derivatives, yet not differing by a constant; and application of Stieltjes integration to the speed of convergence of infinite series.

This book recaptures the sense of wonder that was associated with the subject in its early days. A must for your mathematics library.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Fourth Edition

Год издания: 1996

Количество страниц: 314

Добавлена в каталог: 11.04.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Stieltjes integrals      224—236 238
Stieltjes, Thomas Jan      225
Stirring coffee      102
Stone, Arthur H.      104
Strictly monotonic function      94
Stromberg, Karl Robert      200 217
STUDENT      21 44 79 151 237
Subsequence principle      59 63
Subset      2
Subset, countable      10 15
Subset, of compact set      49
Subset, of countable set      10
Subset, of finite set      16
Subset, of infinite set      15
Subset, of metric space      25 57 58
Subset, proper      2 15
Success      234
Sum, connection with integral      220—221
Sum, of continuous functions      90—91
Sum, of series      52
Sum, of sets      3
Sum, upper and lower      208
Summability method      55 61
Summation by parts      232
Sun, rising      166
Sunyer i Balaguer, Ferran      72
Supercomputer      21
Supporting line      179
Supremum      5 6
Supremum, essential      218
Symbols, $f(x_{0}^{+})$, $f(x_{0}^{-})$      107
Symbols, $f^{+}$, $f^{-}$, etc.      139
Symbols, $f^{-1}$      91
Symbols, $\cap$, $\cup$      3
Symbols, $\infty$      6 7 77 140 210 211
Symbols, $\subset$, $\supset$, $\in$      2
Symbols, $\|f\|_{p}$      218
Symbols, $\|f\|_{\infty}$      218
Symbols, (a,b), [a,b], etc.      6
Symbols, C(E)      3
Symbols, [x]      158
Symbols, {x}      2
Symmetry      242 249
Symmetry, in the origin      101 102
Symmetry, of metric      22 248 259
Szasz, Otto      61
Szego, Gabor      122 156
Szokefalvi-Nagy, Bela      158 174 175 205
Takacs, Lajos      174
Tangent function      247 270
tangents      71 122 143 147 179 180
Tannery’s theorem      120
Tarski, Alfred      200
Taylor series      189
Taylor series, divergent      189—190
Taylor, Gerald D.      158
Taylor’s Theorem      67 187
Teepee      42
Teeth      70 215
Telescoping sum      98 215 223 235 277 279
Ter Horst, H.J.      229
Termwise, differentiation      118—119 145—147 264
Termwise, integration      117—120 214
Ternary expansion      see “Base 3 expansion”
Thurston, Hugh A.      xii
Titchmarsh, Edward Charles      216
topology      115
Total variation      203 216 279
Totally disconnected      42
Transcendental      12
Transformation      79
Translation      199
Triangle inequality      22
Triangle of largest area      50
Tricomi, Francesco Giacomo      103
Trigonometric series      207 221 225 231
Tucker, Albert William      104
Tukey, John Wilder      104
Two-place accuracy      237
Two-to-one functions      94
Ulam, Stanislaw M.      210
Unbounded set      27
Uncountable sets      9
Uncountable sets, Cantor set      41 65
Uncountable sets, points where $f^{+}(x)\leq C$      149
Uncountable sets, polynomials      43
Uncountable sets, real numbers      15 65
Undergraduate instruction      225
Uniform continuity      127—128
Uniform convergence      110—122
Uniform convergence and continuity      112
Uniform convergence and differentiation      119 146
Uniform convergence and integration      117
Uniform convergence, almost      202
union      3
Union of closed sets      36—37
Union of countable sets      10 11
Union of open sets      37
Union of sets of measure zero      74
Union, supremum of      8
Univalent      91
Universal chord theorem      98—100 144
Universal chord theorem, negative part      99
Upper, bound      5
Upper, limit (lim sup)      105 106 109
Upper, sums      208
Vallee Poussin, Charles Jean de La      126
Values of a function      79
Van Rooij, Arnoud C.M.      126
Varberg, Dale E.      156
Varga, Richard S.      224
Variable      79
Variation, bounded      203—204 216 226 228 230 234
Variation, total      203 216 279
Vaughan, Jerry E.      156
Vector field      79
Velocity      156
Vera, Jaime      138
Vitali, Giuseppe      205
Vowels      3 245
Voxman, William L.      44
Vyborny, Rudolf      157
Wadhwa, A.D.      243
Wagon, Stan      200
Walker, Peter L.      217
Walsh, John L.      xi
Walter, Wolfgang L.      186
Wang, Shun-Hwa      244
Water, flowing      166
Wayment, Stanley G.      156
Weierstrass approximation theorem      132 267
Weierstrass M-test      111
Weighted means      181 182
Weil, Clifford E.      72
Wen, Liu      122
Whyburn, Gordon Thomas      122
Widder, David Vernon      xi 132 228
Wiener, Norbert      202
Wiggly function      70
Wilansky, Albert      37 138
Williams, K.P.      107
Woodruff, Edythe P.      156
Wrench, John W.      20
Young, Gail S.      138
Young, William Henry      157
Youngs, John William Theodore      122
Young’s theorem      157
Zajicek, Ludek      175
Zamfirescu, Tudor      174
Zeller, Karl      61 193
Zeta function      243
Zitronenbaum, A.C.      104
Zygmund, Antoni      90 138
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте