Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Boas R.P. — A Primer of Real Functions
Boas R.P. — A Primer of Real Functions



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: A Primer of Real Functions

Автор: Boas R.P.

Аннотация:

This is a revised, updated and significantly augmented edition of a classic Carus Monograph (a bestseller for over 25 years) on the theory of functions of a real variable. Earlier editions of this classic covered sets, metric spaces, continuous functions, and differentiable functions. The greatly expanded fourth edition adds sections on measurable sets and functions, the Lebesgue and Stieltjes integrals, and applications.

The book retains the informal, chatty style of the previous editions, remaining accessible to readers with some mathematical sophistication and a background in calculus. The book is thus suitable either for self-study or for supplemental reading in a course on advanced calculus or real analysis.

Not intended as a systematic treatise, this book has more the character of a sequence of lectures on a variety of interesting topics connected with real functions. Many of these topics are not commonly encountered in undergraduate textbooks: for example, the existence of continuous everywhere-oscillating functions (via the Baire category theorem); the universal chord theorem; two functions having equal derivatives, yet not differing by a constant; and application of Stieltjes integration to the speed of convergence of infinite series.

This book recaptures the sense of wonder that was associated with the subject in its early days. A must for your mathematics library.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Fourth Edition

Год издания: 1996

Количество страниц: 314

Добавлена в каталог: 11.04.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Oehring, Charles C.      xii
Olmsted, John Meigs Hubbell      xii 72
One-sided derivative      140 177 178
One-to-one correspondence      8
One-to-one correspondence, Cantor set and real numbers      42
One-to-one correspondence, continuous functions and sequences      132
One-to-one correspondence, infinite set and proper subset      15
One-to-one correspondence, integers and even integers      9
One-to-one correspondence, interval and line      16
One-to-one correspondence, interval and square      17 117
One-to-one correspondence, sequences and numbers      20
One-to-one correspondence, sets of integers and real numbers      19 20
One-to-one function      91
Open and closed set      28 29 32
Open intervals      28
Open sets      25—37
Open sets, alternative definitions      29
Open sets, complement closed      29
Open sets, disjoint from boundary      29
Open sets, images and inverse images of      88
Open sets, measure of      196
Open sets, neighborhoods      28
Open sets, structure in $R_{1}$      30
Open sets, union and intersection      37
Openness: not intrinsic property      33
Operator      79
Ordered pair      22 77—80 91
Ordinates of maxima      142 156
Oresme, Nicole      256
Orthogonal functions      221—224
Orthonormal      221
Oscillating curve      32
Oscillating function      69—70 203
Osgood, William Fogg      126 268
Ostrowski, Alexander M.      186
Outer measure      172 197 198
Oxtoby, John C      xii 75 103 104
Paige, Lowell J.      157
Pambuccian, Victor      90
Pancake      101—102
Paradox      4 16 200 227
Parametric equations      115 116
Parks, Harold R.      193
Partial summation      232
Partial sums      47 52 54 233 237—243
Partition      206—208 236
Pea      200
Peano curve      114
Pecaric, Josip E.      186
Pencil      85 242
Perfect set      37
Perfect set, continuous functions on      125
Perfect set, nowhere dense      38
Periodic functions      97—98 115 143 238 240 242
Petard, H.W.O.      52
Petersen, Bent E.      229
Pfaff, Donald C      158
Picnic table      104
Piecewise monotonic      158 177
Piranian, George      174
Plancherel, Michel      139
Plato      156
Plaza, Sergio      138
Point      1
Point, as nowhere dense set      38 65
Point, of density      172
Pointwise convergence      108—109 123—126
Polya, George      122 138 139 156 186
Polygonal function      127 128
Polynomials      59
Polynomials, approximating continuous functions      43 128—132
Polynomials, Bernoulli      241
Polynomials, characterized by vanishing derivatives      67—69
Polynomials, extremal problems for      182
Polynomials, power series reducing to      47
Polynomials, with integral coefficients      11—12 20
Pompeiu, Dimitrie      156
Pondiczery, Ersatz Stanislaw      52
Porter, Gerald J.      158
Posey, Eldon E.      156
Positivity of metric      22
Poussin, Charles Jean de La Vallee      126
Power series      47 189—192
Preston, Richard      21
Priestley, William McGowen      75
prime factors      82
Primitives      195
probability      72 207 224
Product, cartesian      79
Product, of continuous functions      90—91
Product, of sets      3
Progression, geometric      52
Pronunciation      225
Proper, maximum      142
Proper, subset      2 15
Pure existence proof      14
Pure jump function      160
Quadrillionth      14
quantum mechanics      225
Quotients of continuous functions      90—91
RADIUS      25
Radius, of convergence      192
Rado, Tibor      175
Randolph, John F.      138
RANGE      77
Range, of continuous functions      92 93
Range, of derivatives      143—145
Rational numbers countable      11
Rational points, Bolzano—Weierstrass fails for      47
Rational points, boundary of      249
Rational points, dense      38 42
Rational points, disconnected      32
Rational points, incomplete      64
Rational points, neither open nor closed      29
Rational points, no interior      26
Real functions      3 79
Real numbers      5—8
Real numbers, not countable      15
Real numbers, number of sequences of      20
Real numbers, number of sets of      17
Real variable      ix 79
Reciprocal      91
Redheffer, Raymond M.      193
Reich, Ludwig      138
Reich, Simeon      157
Reichbach, Marian      21
Remainder (Taylor’s theorem)      187
Repeated integrals      66
Restriction      78
Restriction, continuous, discontinuous      86—87
Riemann integration      206 209 222
Riemann zeta function      243
Riemann-Stieltjes integrals      224—228
Riesz representation theorem      233—236
Riesz — Fischer theorem      222 224
Riesz, Frigyes      158 166 174 175 205 222 224 234
Riesz’s lemma      166—168 170
Right-hand derivative      140
Rigid motions      200
Rising Sun Lemma      166 269
Roberts, John Henderson      103
Rolle’s Theorem      103 104 156
Rooij, Arnoud C.M. van      126
Rosenbaum, J.T.      104
Rosenthal, Arthur      193
Ross, Kenneth A.      229
Rosser, J. Barkley      83
Rota, Gian-Carlo      139
Royden, Halsey L.      205
Rubel, Lee A.      174 175
Rudin, Walter      76 217
Rule      79
Rule, chain      141
Rule, divide and      264
Rule, of arithmetic      246
Ruler function      85 154 158 218
Sack, John      52
Sahara desert      46
Saks, Stanislaw      73 155 156 174
Salzmann, Helmut R.      193
Samelson, Hans      156
Sandwich theorem      102
Saw—tooth function      70
Scalar, field      79
Scalar, product      221
Schaffter, Thomas      200
Schiff, Leonard I.      225 228
Schikhof, Wilhelmus Hendricus      126
Schoenberg, Isaac Jacob      122
Schroeder — Bernstein theorem      18—20
Schwartz, Laurent      229
Schwarz, Hermann Amandus      186 229
Schwarz’s inequality      185 221 223 229
Second category      64 258
Second category, complete metric space is      64
Second category, function continuous and not differentiable at points of set of      153
Second category, nowhere differentiable functions are set of      71
Second category, set of, with measure zero      74 75
Second derivative      179
Seebach, J. Arthur, Jr.      44
Segal, Arthur C.      xii 158
Separable      42—44
SEQUENCE      78—81
Sequence spaces      23—24
Sequence, bounded      24 43 44 59
Sequence, boundedly convergent      111
Sequence, Cauchy      55—58
Sequence, convergence of      52—56
Sequence, differentiation of      119 145—147
Sequence, finite      53 80
Sequence, increasing      57
Sequence, integration of      117—122 212—214
Sequence, monotone convergence      112
Sequence, of functions      108—111 201
Sequence, of moments      131
Sequence, of numbers      20 53
Sequence, of partial sums      54
Sequence, orthogonal      221
Sequence, orthonormal      221
Sequence, pointwise convergence      108
Sequence, uniform convergence      110—122
Sequence, upper and lower limits      104—107
Series      52—55
Series, connection with integrals      220—221
Series, convergence of      183 214
Series, differentiation of      164 171—173
Series, divergent, summed      55
Series, Fourier      225 231
Series, harmonic      196 237 242 244 256
Series, M-test      111
Series, numerical computation of      237—243
Series, of continuous functions      108 121
Series, of monotonic functions      171—172
Series, of orthogonal functions      221—224
Series, partial sums of      237—243
Series, power      47 224
Series, special, summed      120—122 237
Series, Stieltjes integrals applied to      232—233
Series, Taylor      189—192
Series, trigonometric      207 225 231
Set of all sets      4 16
Sets      1—4
Sets, arbitrary, as metric spaces      25
Sets, Borel      198
Sets, boundary of      27
Sets, bounded      7 26 45 49
Sets, Cantor      39—42 74—75
Sets, category of      64
Sets, closed      28
Sets, compact      48
Sets, connected      32
Sets, countable      9
Sets, dense      38—44
Sets, density of      172—173
Sets, disjoint      3
Sets, empty      2
Sets, finite      9
Sets, first category and positive measure      74
Sets, infinite      9 15
Sets, interior of      26
Sets, intersection of      3
Sets, measurable      197 198
Sets, nested      61—62
Sets, nonmeasurable      198—200
Sets, nowhere dense      38—44
Sets, nowhere dense perfect      39
Sets, null      209
Sets, of distances      133
Sets, of limit points      30
Sets, of measure zero      73—75 173 198
Sets, of positive integers      19
Sets, of positive measure      199 206 211
Sets, of real numbers      5—8
Sets, open      28
Sets, perfect      37 38
Sets, product of      3
Sets, second category and measure zero      74
Sets, uncountable      9 14—15
Sets, uncountable and measure zero      74
Sets, union of      3
Shanks, Daniel      20
Shkarin, S.A.      73
Shuchat, Alan Howard      xii
Sibling      vii
Sierpinski, Waclaw      83 90 155 200
Sierpinski’s theorem      73
Silverman, Stephen      138
Simoson, Andrew      200
Sine function      78 182 190
Singh, Avadhesh Narayan      157
Singular functions      161—164 174
Size of sets      73—75
slope      ix 72 100 147 177 179 262
Snake      33
Solovay, Robert M.      200
Sophomore      44
Space      2 21
Space, complete      56 64 112
Space, metric      21—25
Space, separable      42
Space-filling curve      114
Spaces, special, $B$      25 44 47 127
Spaces, special, $B_{E}$      110
Spaces, special, $C$      24 26 108 233
Spaces, special, $c_{0}$      23 24 43
Spaces, special, $C_{E}$      110
Spaces, special, $L^{2}$      221—224
Spaces, special, $L^{2}\cap C$      25 109
Spaces, special, $L^{p}$      217 236
Spaces, special, $m$      24 43 44
Spaces, special, $R_{n}$      23
Spaces, special, integral points      26 38
Spaces, special, rational points      29 47 56 62
Square      17 33 115 116 134 182
Squire, William      244
Staircase      96
Steen, Lynn Arthur      44
Steenrod, Norman Earl      104
Steinhaus, Hugo      138 200
Step functions      127—128 214 226 276
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте