Авторизация
Поиск по указателям
Boas R.P. — A Primer of Real Functions
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: A Primer of Real Functions
Автор: Boas R.P.
Аннотация: This is a revised, updated and significantly augmented edition of a classic Carus Monograph (a bestseller for over 25 years) on the theory of functions of a real variable. Earlier editions of this classic covered sets, metric spaces, continuous functions, and differentiable functions. The greatly expanded fourth edition adds sections on measurable sets and functions, the Lebesgue and Stieltjes integrals, and applications.
The book retains the informal, chatty style of the previous editions, remaining accessible to readers with some mathematical sophistication and a background in calculus. The book is thus suitable either for self-study or for supplemental reading in a course on advanced calculus or real analysis.
Not intended as a systematic treatise, this book has more the character of a sequence of lectures on a variety of interesting topics connected with real functions. Many of these topics are not commonly encountered in undergraduate textbooks: for example, the existence of continuous everywhere-oscillating functions (via the Baire category theorem); the universal chord theorem; two functions having equal derivatives, yet not differing by a constant; and application of Stieltjes integration to the speed of convergence of infinite series.
This book recaptures the sense of wonder that was associated with the subject in its early days. A must for your mathematics library.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: Fourth Edition
Год издания: 1996
Количество страниц: 314
Добавлена в каталог: 11.04.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Oehring, Charles C. xii
Olmsted, John Meigs Hubbell xii 72
One-sided derivative 140 177 178
One-to-one correspondence 8
One-to-one correspondence, Cantor set and real numbers 42
One-to-one correspondence, continuous functions and sequences 132
One-to-one correspondence, infinite set and proper subset 15
One-to-one correspondence, integers and even integers 9
One-to-one correspondence, interval and line 16
One-to-one correspondence, interval and square 17 117
One-to-one correspondence, sequences and numbers 20
One-to-one correspondence, sets of integers and real numbers 19 20
One-to-one function 91
Open and closed set 28 29 32
Open intervals 28
Open sets 25—37
Open sets, alternative definitions 29
Open sets, complement closed 29
Open sets, disjoint from boundary 29
Open sets, images and inverse images of 88
Open sets, measure of 196
Open sets, neighborhoods 28
Open sets, structure in 30
Open sets, union and intersection 37
Openness: not intrinsic property 33
Operator 79
Ordered pair 22 77—80 91
Ordinates of maxima 142 156
Oresme, Nicole 256
Orthogonal functions 221—224
Orthonormal 221
Oscillating curve 32
Oscillating function 69—70 203
Osgood, William Fogg 126 268
Ostrowski, Alexander M. 186
Outer measure 172 197 198
Oxtoby, John C xii 75 103 104
Paige, Lowell J. 157
Pambuccian, Victor 90
Pancake 101—102
Paradox 4 16 200 227
Parametric equations 115 116
Parks, Harold R. 193
Partial summation 232
Partial sums 47 52 54 233 237—243
Partition 206—208 236
Pea 200
Peano curve 114
Pecaric, Josip E. 186
Pencil 85 242
Perfect set 37
Perfect set, continuous functions on 125
Perfect set, nowhere dense 38
Periodic functions 97—98 115 143 238 240 242
Petard, H.W.O. 52
Petersen, Bent E. 229
Pfaff, Donald C 158
Picnic table 104
Piecewise monotonic 158 177
Piranian, George 174
Plancherel, Michel 139
Plato 156
Plaza, Sergio 138
Point 1
Point, as nowhere dense set 38 65
Point, of density 172
Pointwise convergence 108—109 123—126
Polya, George 122 138 139 156 186
Polygonal function 127 128
Polynomials 59
Polynomials, approximating continuous functions 43 128—132
Polynomials, Bernoulli 241
Polynomials, characterized by vanishing derivatives 67—69
Polynomials, extremal problems for 182
Polynomials, power series reducing to 47
Polynomials, with integral coefficients 11—12 20
Pompeiu, Dimitrie 156
Pondiczery, Ersatz Stanislaw 52
Porter, Gerald J. 158
Posey, Eldon E. 156
Positivity of metric 22
Poussin, Charles Jean de La Vallee 126
Power series 47 189—192
Preston, Richard 21
Priestley, William McGowen 75
prime factors 82
Primitives 195
probability 72 207 224
Product, cartesian 79
Product, of continuous functions 90—91
Product, of sets 3
Progression, geometric 52
Pronunciation 225
Proper, maximum 142
Proper, subset 2 15
Pure existence proof 14
Pure jump function 160
Quadrillionth 14
quantum mechanics 225
Quotients of continuous functions 90—91
RADIUS 25
Radius, of convergence 192
Rado, Tibor 175
Randolph, John F. 138
RANGE 77
Range, of continuous functions 92 93
Range, of derivatives 143—145
Rational numbers countable 11
Rational points, Bolzano—Weierstrass fails for 47
Rational points, boundary of 249
Rational points, dense 38 42
Rational points, disconnected 32
Rational points, incomplete 64
Rational points, neither open nor closed 29
Rational points, no interior 26
Real functions 3 79
Real numbers 5—8
Real numbers, not countable 15
Real numbers, number of sequences of 20
Real numbers, number of sets of 17
Real variable ix 79
Reciprocal 91
Redheffer, Raymond M. 193
Reich, Ludwig 138
Reich, Simeon 157
Reichbach, Marian 21
Remainder (Taylor’s theorem) 187
Repeated integrals 66
Restriction 78
Restriction, continuous, discontinuous 86—87
Riemann integration 206 209 222
Riemann zeta function 243
Riemann-Stieltjes integrals 224—228
Riesz representation theorem 233—236
Riesz — Fischer theorem 222 224
Riesz, Frigyes 158 166 174 175 205 222 224 234
Riesz’s lemma 166—168 170
Right-hand derivative 140
Rigid motions 200
Rising Sun Lemma 166 269
Roberts, John Henderson 103
Rolle’s Theorem 103 104 156
Rooij, Arnoud C.M. van 126
Rosenbaum, J.T. 104
Rosenthal, Arthur 193
Ross, Kenneth A. 229
Rosser, J. Barkley 83
Rota, Gian-Carlo 139
Royden, Halsey L. 205
Rubel, Lee A. 174 175
Rudin, Walter 76 217
Rule 79
Rule, chain 141
Rule, divide and 264
Rule, of arithmetic 246
Ruler function 85 154 158 218
Sack, John 52
Sahara desert 46
Saks, Stanislaw 73 155 156 174
Salzmann, Helmut R. 193
Samelson, Hans 156
Sandwich theorem 102
Saw—tooth function 70
Scalar, field 79
Scalar, product 221
Schaffter, Thomas 200
Schiff, Leonard I. 225 228
Schikhof, Wilhelmus Hendricus 126
Schoenberg, Isaac Jacob 122
Schroeder — Bernstein theorem 18—20
Schwartz, Laurent 229
Schwarz, Hermann Amandus 186 229
Schwarz’s inequality 185 221 223 229
Second category 64 258
Second category, complete metric space is 64
Second category, function continuous and not differentiable at points of set of 153
Second category, nowhere differentiable functions are set of 71
Second category, set of, with measure zero 74 75
Second derivative 179
Seebach, J. Arthur, Jr. 44
Segal, Arthur C. xii 158
Separable 42—44
SEQUENCE 78—81
Sequence spaces 23—24
Sequence, bounded 24 43 44 59
Sequence, boundedly convergent 111
Sequence, Cauchy 55—58
Sequence, convergence of 52—56
Sequence, differentiation of 119 145—147
Sequence, finite 53 80
Sequence, increasing 57
Sequence, integration of 117—122 212—214
Sequence, monotone convergence 112
Sequence, of functions 108—111 201
Sequence, of moments 131
Sequence, of numbers 20 53
Sequence, of partial sums 54
Sequence, orthogonal 221
Sequence, orthonormal 221
Sequence, pointwise convergence 108
Sequence, uniform convergence 110—122
Sequence, upper and lower limits 104—107
Series 52—55
Series, connection with integrals 220—221
Series, convergence of 183 214
Series, differentiation of 164 171—173
Series, divergent, summed 55
Series, Fourier 225 231
Series, harmonic 196 237 242 244 256
Series, M-test 111
Series, numerical computation of 237—243
Series, of continuous functions 108 121
Series, of monotonic functions 171—172
Series, of orthogonal functions 221—224
Series, partial sums of 237—243
Series, power 47 224
Series, special, summed 120—122 237
Series, Stieltjes integrals applied to 232—233
Series, Taylor 189—192
Series, trigonometric 207 225 231
Set of all sets 4 16
Sets 1—4
Sets, arbitrary, as metric spaces 25
Sets, Borel 198
Sets, boundary of 27
Sets, bounded 7 26 45 49
Sets, Cantor 39—42 74—75
Sets, category of 64
Sets, closed 28
Sets, compact 48
Sets, connected 32
Sets, countable 9
Sets, dense 38—44
Sets, density of 172—173
Sets, disjoint 3
Sets, empty 2
Sets, finite 9
Sets, first category and positive measure 74
Sets, infinite 9 15
Sets, interior of 26
Sets, intersection of 3
Sets, measurable 197 198
Sets, nested 61—62
Sets, nonmeasurable 198—200
Sets, nowhere dense 38—44
Sets, nowhere dense perfect 39
Sets, null 209
Sets, of distances 133
Sets, of limit points 30
Sets, of measure zero 73—75 173 198
Sets, of positive integers 19
Sets, of positive measure 199 206 211
Sets, of real numbers 5—8
Sets, open 28
Sets, perfect 37 38
Sets, product of 3
Sets, second category and measure zero 74
Sets, uncountable 9 14—15
Sets, uncountable and measure zero 74
Sets, union of 3
Shanks, Daniel 20
Shkarin, S.A. 73
Shuchat, Alan Howard xii
Sibling vii
Sierpinski, Waclaw 83 90 155 200
Sierpinski’s theorem 73
Silverman, Stephen 138
Simoson, Andrew 200
Sine function 78 182 190
Singh, Avadhesh Narayan 157
Singular functions 161—164 174
Size of sets 73—75
slope ix 72 100 147 177 179 262
Snake 33
Solovay, Robert M. 200
Sophomore 44
Space 2 21
Space, complete 56 64 112
Space, metric 21—25
Space, separable 42
Space-filling curve 114
Spaces, special, 25 44 47 127
Spaces, special, 110
Spaces, special, 24 26 108 233
Spaces, special, 23 24 43
Spaces, special, 110
Spaces, special, 221—224
Spaces, special, 25 109
Spaces, special, 217 236
Spaces, special, 24 43 44
Spaces, special, 23
Spaces, special, integral points 26 38
Spaces, special, rational points 29 47 56 62
Square 17 33 115 116 134 182
Squire, William 244
Staircase 96
Steen, Lynn Arthur 44
Steenrod, Norman Earl 104
Steinhaus, Hugo 138 200
Step functions 127—128 214 226 276
Реклама