Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Boas R.P. — A Primer of Real Functions
Boas R.P. — A Primer of Real Functions



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: A Primer of Real Functions

Автор: Boas R.P.

Аннотация:

This is a revised, updated and significantly augmented edition of a classic Carus Monograph (a bestseller for over 25 years) on the theory of functions of a real variable. Earlier editions of this classic covered sets, metric spaces, continuous functions, and differentiable functions. The greatly expanded fourth edition adds sections on measurable sets and functions, the Lebesgue and Stieltjes integrals, and applications.

The book retains the informal, chatty style of the previous editions, remaining accessible to readers with some mathematical sophistication and a background in calculus. The book is thus suitable either for self-study or for supplemental reading in a course on advanced calculus or real analysis.

Not intended as a systematic treatise, this book has more the character of a sequence of lectures on a variety of interesting topics connected with real functions. Many of these topics are not commonly encountered in undergraduate textbooks: for example, the existence of continuous everywhere-oscillating functions (via the Baire category theorem); the universal chord theorem; two functions having equal derivatives, yet not differing by a constant; and application of Stieltjes integration to the speed of convergence of infinite series.

This book recaptures the sense of wonder that was associated with the subject in its early days. A must for your mathematics library.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Fourth Edition

Год издания: 1996

Количество страниц: 314

Добавлена в каталог: 11.04.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Geometric progression      52
Geometry      21 22
German mathematician      229
Gillespie, D.C      103
Goedel, Kurt      xi
Goffman, Casper      217
Goldberg, Richard R.      52 224
Goldowsky, G.      174
Gould, Henry W.      244
Graduate Record Examination      156
Graph      79 85 95 100 126 133 175
Gravity, center of      180 193
Greatest integer function      158 227 238 277
Greatest lower bound      6 7
Green, John W.      138
Gustin, William      138
Haber, S.      xii
Halmos, Paul R.      262
Ham sandwich theorem      102
Hamel basis      138
Hamel, Georg      138 139
Hardy, Godfrey Harold      61 83 138 186 207 243
Harmonic series      196 237 242 256
Harrold, Orville G.      103
Healthy skepticism      x
Heath, Thomas L.      200
Hegyvari, Norbert      244
Heine — Borel theorem      49—51
Heine — Borel theorem, converse of      51
Heine — Borel theorem, in R_{2}      50
Heirloom      vii
Heligoland bird trap      46
Hellmann, M.S.      21
Hersch, Joseph      139
Heuer, Gerald A.      158
Hewitt, Edwin      217
Hildebrandt, Theophil Henry      72
Historical reasons      241
Hobson, Ernest William      156
Holder’s Inequality      185
Home-made supercomputer      21
Hopf, Heinz      103 104
Horizontal chords      97—99 144
Hrbacek, Karel      138
Huggins, Frank N.      206
Hunting      52
Hurewicz, Witold      122
Hypotenuse      248
Idea, misleading      237
Identity function      81
Image      79
Image, inverse      88
Image, not necessarily open      88
Improper, integral      279
Improper, maxima      142
Increasing, at a point      141 155
Increasing, bounded sequence      57
Increasing, function      113 141 149 158
Indefinite integrals      117 119 195 214 216
Inequality, arithmetic and geometric means      181
Inequality, Bessel      222
Inequality, between sines and cosines      182
Inequality, Cauchy      185
Inequality, for integrals      181
Inequality, Holder      185
Inequality, Jensen      180—182 185
Inequality, midpoint      176
Inequality, Minkowski      24 184
Inequality, Schwarz      185 221 223
Inequality, triangle      22
Inf, infimum      6 7
Infinite, derivative      70—71 140 151 152 174
Infinite, measure      197
Infinite, numbers      7
Infinite, sequences      23—24 55—61
Infinite, series      52—55 189 237—243
Infinite, sets      8—20 45—47
Infinitely differentiate functions      118 120 186—192
Inner measure      198
Inner product      221
Instruction, undergraduate      225
Integer points of $R_2$      10 26
Integers      8 19
Integrable functions      202 206 208—210
Integrable functions, Riemann      117 118
Integral test      220 239
Integrals      195—243
Integrals, connection with sums      220—221
Integrals, derivatives of      214—215
Integrals, inequalities for      181
Integrals, Lebesgue      206—224
Integrals, mean-value theorem for      229—230
Integrals, of derivatives      215—216
Integrals, of periodic functions      97
Integrals, repeated      66
Integrals, Riemann      206
Integrals, Stieltjes      224—236
Integrals, vanishing of      66
Integration by parts      187 227 228 231—233 239—241 275
Integration of sequences      117—122 212—214
intercept      102 262
Interior      26
Intermediate value property      84—85
Intermediate value property, for continuous functions      92
Intermediate value property, for derivatives      143 156
Intermediate value property, of      93—102
Intersection      3
Intersection, of closed sets      36—37
Intersection, of open sets      37
interval      6
Interval, closed, as a union of closed sets      72
Interval, collection is countable      30
Interval, open and closed      28
Intrinsic property      34
Inverse, function      91
Inverse, image      88
Inverse, tangent      164
Italian edition      155
Jech, Thomas      138
Jensen’s Inequality      180—182 185
Joggers      104
Johnson, Peter D., Jr.      72
Jump      85 151 159—161
Jump function      160
Kaplansky, Irving      61
Kestelman, Hyman      138 175
Klamkin, Murray S.      186
Kleiner, Israel      83
Knife      101
Konig, Heinz      186
Kraft, Roger L.      138
Krantz, Steven George      193
Kuczma, Marek      186
Kuratowski, Kazimierz      37
La Vallee Poussin, Charles Jean de      126
Landau, Edmund      132
Laplace transforms      224
Lattice points      10
Law of the mean      see “Mean-value theorem”
Least upper bound      5
Least upper bound, property      5—7 56
Lebesgue — Stieltjes integrals      224
Lebesgue, differentiation theorem      175
Lebesgue, Henri Leon      90 126 175 207
Lebesgue, integral      206—224
Lebesgue, measurable      197 201
Lebesgue, measure      195—200
Lee, Ken W.      138
Left-hand derivative      140
Lehmer, Derrick Henry      244
Lemma Riesz      166
Lemma, Fatou      213
Lemma, flowing water      166
Lemma, rising sun      166
Level sets      152
Levit, Robert J.      103
Levy, Paul      103 262
Librarian      4
Limit of derivative      151 187
Limit of function      107
Limit of integral      136—138 279
Limit of integration      227
Limit of monotonic function      159
Limit of sequence      54—56 58
Limit of sequence, boundedly convergent      111
Limit of sequence, increasing      57
Limit of sequence, nonuniformly convergent      112 114
Limit of sequence, of continuous functions      108 123—126
Limit of sequence, of derivatives      145—147
Limit of sequence, of differentiable functions      119
Limit of sequence, of monotonic functions      113
Limit of sequence, uniformly convergent      110—122
Limit of sums approximating an integral      226
Limit point      29—30 45—46 58—59
Limit, lower (lim inf)      104—107
Limit, upper (lim sup)      104—107
Line, supporting      179
Linear, functionals      233—236
Linear, functions      132—138
Lion      46
Liouville numbers      75
Lipiriski, Jan Stanislaw      174
Littlewood, John Edensor      138 186
Locus      23 173—174
log 2      121
Logarithm      80
Logical difficulties      4
Lorch, Edgar Raymond      126
Lorch, Lee      122
Lower, bound      6
Lower, limit      109
Lower, sums      208
M-test      111 115 159 163 264
Majumder, N.C. Bose      138
Mapping      79
Markus (Marcus), Solomon      157
Masses      224
Maxima      6 142
Maxima, computing by integration      217—219
Maxima, improper      142
Maxima, number of      142—143
Maxima, of compact set in $R_{1}$      59
Maxima, of functions      46 93 142
Maxima, proper      142
May, Kenneth Ownsworth      138
McCarthy, John      72
McHugh, James A.M.      193
McLeod, Robert M.      211
Meager set      64
Mean-value theorem      143—145 229—230
Mean-value theorem, Bonnet      231
Mean-value theorem, generalized      148—149 152
Means, arithmetic and geometric      181—182
Measurable functions      201—205
Measurable sets      197
Measure, Baire      236
Measure, Borel      236
Measure, finite      210
Measure, inner      198
Measure, Lebesgue      195—200
Measure, of an interval      196
Measure, of points at given distance from a set      173—174
Measure, outer      172 197 198
Measure, positive      134 211
Measure, zero      73—75 160 165 209
Mechanics      224
Member      1
Memorial      vii
Memory, J.D.      104
Menger, Karl      83
Metcalf, Frederic T.      103
Metric      22
Metric, space      21—25
Middle thirds      39 134
Midpoint inequality      176
Miller, Anthony D.      157
Million      20
Minimum      6
Minkowski’s inequality      24 184 186 218 223
Minty, George J.      83
Mirkil, Hazleton      193
Misleading idea      237
Mitrinovic, Dragoslav S.      186
Model      79
Molecule      102
moment      131 224
Monotone convergence      112 214
Monotonic functions      94 158—174
Monotonic functions, bounded      159 226
Monotonic functions, bounded variation      203
Monotonic functions, convergence of      159
Monotonic functions, differentiability      155 161 165—170
Monotonic functions, integral test      220
Monotonic functions, jumps of      159—160
Monotonic functions, limits      159
Monotonic functions, measurable      201
Monotonic functions, sequence of      113
Monotonic functions, series of      171—172
Monotonic functions, singular      161
Monotonic functions, strictly      158
Morayne, Michal      156
Morgenstern, Dietrich      193
Morse, Anthony Perry      73 157 158
Motions, rigid      200
Mountain      104 166
Multiple-valued      77
Munroe, Marshall Evans      52
Neighborhood      25 37
Neighborhood, boundary of      28
Neighborhood, closure of      36 37
Neighborhood, diameter of      61
Neighborhood, in C      26
Neighborhood, in lattice      26
Neighborhood, is open      26 28
Nested sets      61—62
Ng, Che Tat      186
Nineteenth century      59 70 108
Niven, Ivan Morton      21 186
Noncollinear points      50
Nondecreasing function      113 149 150 158 171 174 177 213 230
Nondifferentiable functions      70—72
Nonincreasing function      158
Nonmeasurable set      198 200
Norm      218 221
Norton, Alec      158
Nowhere dense sets      38—44 63 66 67 69 71
Nowhere dense sets, closed      38
Nowhere dense sets, complement of dense open set      69
Nowhere dense sets, perfect      39
Nowhere dense sets, singletons      65
Nowhere differentiate      70—72 122 131 154 273
Null set      209
Number of subsets      16—17
Number theory      14 135
Numbers, algebraic      11—15
Numbers, rational      11
Numbers, real      5—8
Numbers, transcendental      12 14—15 75
Nurcombe, J.R.      186
Nymann, J.E.      158
1 2 3 4 5
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте