Авторизация
Поиск по указателям
Boas R.P. — A Primer of Real Functions
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: A Primer of Real Functions
Автор: Boas R.P.
Аннотация: This is a revised, updated and significantly augmented edition of a classic Carus Monograph (a bestseller for over 25 years) on the theory of functions of a real variable. Earlier editions of this classic covered sets, metric spaces, continuous functions, and differentiable functions. The greatly expanded fourth edition adds sections on measurable sets and functions, the Lebesgue and Stieltjes integrals, and applications.
The book retains the informal, chatty style of the previous editions, remaining accessible to readers with some mathematical sophistication and a background in calculus. The book is thus suitable either for self-study or for supplemental reading in a course on advanced calculus or real analysis.
Not intended as a systematic treatise, this book has more the character of a sequence of lectures on a variety of interesting topics connected with real functions. Many of these topics are not commonly encountered in undergraduate textbooks: for example, the existence of continuous everywhere-oscillating functions (via the Baire category theorem); the universal chord theorem; two functions having equal derivatives, yet not differing by a constant; and application of Stieltjes integration to the speed of convergence of infinite series.
This book recaptures the sense of wonder that was associated with the subject in its early days. A must for your mathematics library.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: Fourth Edition
Год издания: 1996
Количество страниц: 314
Добавлена в каталог: 11.04.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Geometric progression 52
Geometry 21 22
German mathematician 229
Gillespie, D.C 103
Goedel, Kurt xi
Goffman, Casper 217
Goldberg, Richard R. 52 224
Goldowsky, G. 174
Gould, Henry W. 244
Graduate Record Examination 156
Graph 79 85 95 100 126 133 175
Gravity, center of 180 193
Greatest integer function 158 227 238 277
Greatest lower bound 6 7
Green, John W. 138
Gustin, William 138
Haber, S. xii
Halmos, Paul R. 262
Ham sandwich theorem 102
Hamel basis 138
Hamel, Georg 138 139
Hardy, Godfrey Harold 61 83 138 186 207 243
Harmonic series 196 237 242 256
Harrold, Orville G. 103
Healthy skepticism x
Heath, Thomas L. 200
Hegyvari, Norbert 244
Heine — Borel theorem 49—51
Heine — Borel theorem, converse of 51
Heine — Borel theorem, in R_{2} 50
Heirloom vii
Heligoland bird trap 46
Hellmann, M.S. 21
Hersch, Joseph 139
Heuer, Gerald A. 158
Hewitt, Edwin 217
Hildebrandt, Theophil Henry 72
Historical reasons 241
Hobson, Ernest William 156
Holder’s Inequality 185
Home-made supercomputer 21
Hopf, Heinz 103 104
Horizontal chords 97—99 144
Hrbacek, Karel 138
Huggins, Frank N. 206
Hunting 52
Hurewicz, Witold 122
Hypotenuse 248
Idea, misleading 237
Identity function 81
Image 79
Image, inverse 88
Image, not necessarily open 88
Improper, integral 279
Improper, maxima 142
Increasing, at a point 141 155
Increasing, bounded sequence 57
Increasing, function 113 141 149 158
Indefinite integrals 117 119 195 214 216
Inequality, arithmetic and geometric means 181
Inequality, Bessel 222
Inequality, between sines and cosines 182
Inequality, Cauchy 185
Inequality, for integrals 181
Inequality, Holder 185
Inequality, Jensen 180—182 185
Inequality, midpoint 176
Inequality, Minkowski 24 184
Inequality, Schwarz 185 221 223
Inequality, triangle 22
Inf, infimum 6 7
Infinite, derivative 70—71 140 151 152 174
Infinite, measure 197
Infinite, numbers 7
Infinite, sequences 23—24 55—61
Infinite, series 52—55 189 237—243
Infinite, sets 8—20 45—47
Infinitely differentiate functions 118 120 186—192
Inner measure 198
Inner product 221
Instruction, undergraduate 225
Integer points of 10 26
Integers 8 19
Integrable functions 202 206 208—210
Integrable functions, Riemann 117 118
Integral test 220 239
Integrals 195—243
Integrals, connection with sums 220—221
Integrals, derivatives of 214—215
Integrals, inequalities for 181
Integrals, Lebesgue 206—224
Integrals, mean-value theorem for 229—230
Integrals, of derivatives 215—216
Integrals, of periodic functions 97
Integrals, repeated 66
Integrals, Riemann 206
Integrals, Stieltjes 224—236
Integrals, vanishing of 66
Integration by parts 187 227 228 231—233 239—241 275
Integration of sequences 117—122 212—214
intercept 102 262
Interior 26
Intermediate value property 84—85
Intermediate value property, for continuous functions 92
Intermediate value property, for derivatives 143 156
Intermediate value property, of 93—102
Intersection 3
Intersection, of closed sets 36—37
Intersection, of open sets 37
interval 6
Interval, closed, as a union of closed sets 72
Interval, collection is countable 30
Interval, open and closed 28
Intrinsic property 34
Inverse, function 91
Inverse, image 88
Inverse, tangent 164
Italian edition 155
Jech, Thomas 138
Jensen’s Inequality 180—182 185
Joggers 104
Johnson, Peter D., Jr. 72
Jump 85 151 159—161
Jump function 160
Kaplansky, Irving 61
Kestelman, Hyman 138 175
Klamkin, Murray S. 186
Kleiner, Israel 83
Knife 101
Konig, Heinz 186
Kraft, Roger L. 138
Krantz, Steven George 193
Kuczma, Marek 186
Kuratowski, Kazimierz 37
La Vallee Poussin, Charles Jean de 126
Landau, Edmund 132
Laplace transforms 224
Lattice points 10
Law of the mean see “Mean-value theorem”
Least upper bound 5
Least upper bound, property 5—7 56
Lebesgue — Stieltjes integrals 224
Lebesgue, differentiation theorem 175
Lebesgue, Henri Leon 90 126 175 207
Lebesgue, integral 206—224
Lebesgue, measurable 197 201
Lebesgue, measure 195—200
Lee, Ken W. 138
Left-hand derivative 140
Lehmer, Derrick Henry 244
Lemma Riesz 166
Lemma, Fatou 213
Lemma, flowing water 166
Lemma, rising sun 166
Level sets 152
Levit, Robert J. 103
Levy, Paul 103 262
Librarian 4
Limit of derivative 151 187
Limit of function 107
Limit of integral 136—138 279
Limit of integration 227
Limit of monotonic function 159
Limit of sequence 54—56 58
Limit of sequence, boundedly convergent 111
Limit of sequence, increasing 57
Limit of sequence, nonuniformly convergent 112 114
Limit of sequence, of continuous functions 108 123—126
Limit of sequence, of derivatives 145—147
Limit of sequence, of differentiable functions 119
Limit of sequence, of monotonic functions 113
Limit of sequence, uniformly convergent 110—122
Limit of sums approximating an integral 226
Limit point 29—30 45—46 58—59
Limit, lower (lim inf) 104—107
Limit, upper (lim sup) 104—107
Line, supporting 179
Linear, functionals 233—236
Linear, functions 132—138
Lion 46
Liouville numbers 75
Lipiriski, Jan Stanislaw 174
Littlewood, John Edensor 138 186
Locus 23 173—174
log 2 121
Logarithm 80
Logical difficulties 4
Lorch, Edgar Raymond 126
Lorch, Lee 122
Lower, bound 6
Lower, limit 109
Lower, sums 208
M-test 111 115 159 163 264
Majumder, N.C. Bose 138
Mapping 79
Markus (Marcus), Solomon 157
Masses 224
Maxima 6 142
Maxima, computing by integration 217—219
Maxima, improper 142
Maxima, number of 142—143
Maxima, of compact set in 59
Maxima, of functions 46 93 142
Maxima, proper 142
May, Kenneth Ownsworth 138
McCarthy, John 72
McHugh, James A.M. 193
McLeod, Robert M. 211
Meager set 64
Mean-value theorem 143—145 229—230
Mean-value theorem, Bonnet 231
Mean-value theorem, generalized 148—149 152
Means, arithmetic and geometric 181—182
Measurable functions 201—205
Measurable sets 197
Measure, Baire 236
Measure, Borel 236
Measure, finite 210
Measure, inner 198
Measure, Lebesgue 195—200
Measure, of an interval 196
Measure, of points at given distance from a set 173—174
Measure, outer 172 197 198
Measure, positive 134 211
Measure, zero 73—75 160 165 209
Mechanics 224
Member 1
Memorial vii
Memory, J.D. 104
Menger, Karl 83
Metcalf, Frederic T. 103
Metric 22
Metric, space 21—25
Middle thirds 39 134
Midpoint inequality 176
Miller, Anthony D. 157
Million 20
Minimum 6
Minkowski’s inequality 24 184 186 218 223
Minty, George J. 83
Mirkil, Hazleton 193
Misleading idea 237
Mitrinovic, Dragoslav S. 186
Model 79
Molecule 102
moment 131 224
Monotone convergence 112 214
Monotonic functions 94 158—174
Monotonic functions, bounded 159 226
Monotonic functions, bounded variation 203
Monotonic functions, convergence of 159
Monotonic functions, differentiability 155 161 165—170
Monotonic functions, integral test 220
Monotonic functions, jumps of 159—160
Monotonic functions, limits 159
Monotonic functions, measurable 201
Monotonic functions, sequence of 113
Monotonic functions, series of 171—172
Monotonic functions, singular 161
Monotonic functions, strictly 158
Morayne, Michal 156
Morgenstern, Dietrich 193
Morse, Anthony Perry 73 157 158
Motions, rigid 200
Mountain 104 166
Multiple-valued 77
Munroe, Marshall Evans 52
Neighborhood 25 37
Neighborhood, boundary of 28
Neighborhood, closure of 36 37
Neighborhood, diameter of 61
Neighborhood, in C 26
Neighborhood, in lattice 26
Neighborhood, is open 26 28
Nested sets 61—62
Ng, Che Tat 186
Nineteenth century 59 70 108
Niven, Ivan Morton 21 186
Noncollinear points 50
Nondecreasing function 113 149 150 158 171 174 177 213 230
Nondifferentiable functions 70—72
Nonincreasing function 158
Nonmeasurable set 198 200
Norm 218 221
Norton, Alec 158
Nowhere dense sets 38—44 63 66 67 69 71
Nowhere dense sets, closed 38
Nowhere dense sets, complement of dense open set 69
Nowhere dense sets, perfect 39
Nowhere dense sets, singletons 65
Nowhere differentiate 70—72 122 131 154 273
Null set 209
Number of subsets 16—17
Number theory 14 135
Numbers, algebraic 11—15
Numbers, rational 11
Numbers, real 5—8
Numbers, transcendental 12 14—15 75
Nurcombe, J.R. 186
Nymann, J.E. 158
Реклама