Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Streater R.S., Wightman A.S. — PCT, Spin and Statistics, and All That
Streater R.S., Wightman A.S. — PCT, Spin and Statistics, and All That



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: PCT, Spin and Statistics, and All That

Авторы: Streater R.S., Wightman A.S.

Аннотация:

PCT, Spin and Statistics, and All That is the classic summary of and introduction to the achievements of Axiomatic Quantum Field Theory. This theory gives precise mathematical responses to questions like: What is a quantized field? What are the physically indispensable attributes of a quantized field? Furthermore, Axiomatic Field Theory shows that a number of physically important predictions of quantum field theory are mathematical consequences of the axioms. Here Raymond Streater and Arthur Wightman treat only results that can be rigorously proved, and these are presented in an elegant style that makes them available to a broad range of physics and theoretical mathematics.


Язык: en

Рубрика: Физика/Квантовая теория поля/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1964

Количество страниц: 190

Добавлена в каталог: 03.06.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Abnormal commutation relations      154 158
Adjoint      88
Algebra, polynomial      137 138
Algebra, von Neumann      142 169
Analytic      48
Analytic completion      77
Analytic continuation      49 66
Analytic continuation, of $\mathscr D(j/2, k/2)$      16 64
Analytic function      48
Annihilation operator      26 139 165
Anti-commutation relation      100
Anti-commute      100
Anti-linear      8
Anti-unitary      7 8 17
Asymptotic completeness      26 102
Asymptotic completeness, condition      169
Asymptotic field      26
Bare mass      2
Bare vacuum      2
Baryon number      5
Baryon number, superselection rule      5
Borchers class      168
Bose — Einstein statistics      146
Bounded operator      5 89 142
Bounded set      36
Canonical commutation relations      100
Cauchy sequence      85 121 122
Cauchy — Riemann equations      56
Causality      100
Charge conjugation      16 113
Closed graph theorem      90
Cluster decomposition property      111 117 148 153
Coherent subspace      6
Collision states      24 98 126
Commutant      6 139
Commutation relations      100
Commutation relations, abnormal      154 158
Commutation relations, normal      145 154 156
Commutative superselection rule      6 7
Commutativity      101
Commutativity, local      100 109 118 134
Compact set      35
Complete commuting set      6
Complete space      36 85
Complex Lorentz group      13
Complex Poincare group      14
Component of a group      10
Composite particle      24
Conservation law      130
Constant field      100
Continuation, analytic      49
Continuous linear functional      32
Convergence in $\mathscr D$      35
Convergence in $\mathscr G$      33
Convergence strong (in norm)      107
Convolution      41
Creation operator      26 139
Cyclic      101 141
Dense set      85
Dirac $\delta$-function      31
Dirac $\delta$-function, equation      18—20
Dirac $\delta$-function, field      99
Direct product      16
Direct sum      86
distribution      31 32
Domains of definition      87 88 98
Dotted index      15
Edge of the wedge      74—84 116
Elementary system      22—24
Energy      29 97
Environment, real      49
Equivalence, S-      170
Equivalence, S-class      168
Essentially self-adjoint      89
Even-odd rule      153 154
expectation value      106 114
Extended tube      64 114 143
Extension      88 89 98 99
Fast decrease      40 47 54
Fermi — Dirac statistics      146
Field      100
Field theory      100 101
Form-invariant      16
Four-vector      17 99
Fourier transform      43
Free field      27 102 116
Generalized free field      105
Generalized Haag's theorem      166
Graph      88
Haag — Ruelle theory      2 142 168
Haag's theorem      163 165
Heisenberg picture      4
Hermitian operator      4 89
Hilbert space      84—93
Holomorphic      48
Homomorphism      12
Identity representation      22
In-field      27
In-state      26
Infrared problem      24
Inhomogenous groups, Lorentz      14
Interaction picture      4 161 166
Invariance principle      7
Irreducible representation      15 23
Irreducible representation, set of operators      101 140 141
Jost point      70—72 74 143 144
Kernel      42
Klein transformation      147 155 157
Laplace transformation      52
Linear functional      32
Linear operator      4 8
Linear program      116
Local commutativity      100 109 118 134
Local, relative      168
Lorentz group      9
Mass      97
Mass gap      111
Matrix representation      15
Maximal Abelian      6
Microscopic causality      100 109 118 134
Midden      2
Mixed state      4 (ftnt)
Momentum      25 29 97
Monomial      156
Multiplicative symmetry      129
Multiplicity      25 29 97
Neighborhood      64 66
Nonlinear program      117
Nonseparable      86 87
Norm      33
Normal commutation relations      145 154 156
Nuclear theorem      42 43 83 108 138
Observable      4—6
One-particle state      22
One-sided Laplace transform      53
Operator      88
Orthochorous      10 11
Orthochronous      10 11
Orthogonal complement      88
Out states      26
Painleve's theorem      74
Parity of numbers      156
Pauli — Luders      142 143
Permuted extended tube      73
Physically realizable      4
Picture, Heisenberg      4
Picture, interaction      4
Picture, Schroedinger      4
Poincare group      14
Polydisc      48
Polynomial algebra      137
Positive definite      23 110 118
Pre-Hilbert space      120
Projection operator      5 (ftnt)
Proper complex Lorentz group      14
Proper Lorentz group      10 11
Pure Lorentz transformation      10
Pure state      4 (ftnt)
RANGE      88
Ray      4
Ray correspondence      8
Real environment      49 80 84
Realizable      5
Reeh — Schlieder theorem      138
Regularization      42 82
Relative locality      168
Relative locality, weak      171
Restricted Lorentz group      11 14 168
Ruelle — Haag theory      2 142
S-equivalence      170
S-matrix      26
Scalar field      24 117 127
Scalar product      23 85 103 119
Schlieder-Reeh      138
Schroedinger picture      4
Schwartz nuclear theorem      42 83 138
Schwarz inequality      120 121
Schwarz reflection principle      76
Second-rank spinor      17
Self-adjoint      89 98
Separable      36 85 87
Separating vector      139
Single-valued      49
Smeared fields      97 164
Smooth      31
SNAG theorem      92
Space inversion      8 10 16
Space-time inversion      10
Special linear group      11
Spectral condition      97 108 117
Spin      22 23
Spin and statistics      146
Spinor      11 15
Spinor, Dirac      18
Substitution law      16 17 20
Superposition principle      4 5
Superselection rule      5
Support      32
Symmetry      7 8 16 17 126 129
Tempered      33
Tensor product      40 87
Test function      31
Time inversion      10 16
Time slice      105 142
Totally space-like      116
Transformation law      17—19 99
Transition amplitude      4
Transitive      172
Translation      14
Tube      48 54 59
Two-sided Laplace transform      53
Unbounded operator      88 90 97 98
Unit ray      4
Unit vector      4
Unitary operator      7
Univalence      5 153
VACUUM      21 97
Vector      4
Vector correspondence      8
Weak local commutativity (WLC)      142 143 145 146
Weakly local fields      105
Wick polynomial      104 105 169
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте