Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Samuel P. — Algebraic theory of numbers
Samuel P. — Algebraic theory of numbers



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Algebraic theory of numbers

Автор: Samuel P.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1970

Количество страниц: 109

Добавлена в каталог: 07.06.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Abelian extension      VI.1
Algebraic extension      II.3
Algebraic over a field      II.3
Algebraically closed field      II.3
Associates in a ring      I.1
Automorphism, Frobenius      VI.1 and VI.3
Base of a module      I.4
Base, canonical      I.4
Bases, dual for the trace      II.7
Bezout, identity of      I.1
Characteristic of a field      I.7
Characteristic polynomial      II.6
Classes, ideal      III.4
Closure, integral      II.1
Conjugate elements or fields      II.4
Conjugate prime ideals      VI.2
Cyclic extension      VI.1
Cyclotomic extension      VI.1
Cyclotomic field, polynomial      II.9
Decomposition group      VI.2
Dedekind ring      III.4
Degree, residual      V.2
Dependence, equation of integral      II.1
Descent, infinite      I.2
Diophantinc equation      I.2
Discriminant      II.7
Discriminant ideal      II.7 and V.3
Discriminant, absolute (of a number field)      II.8
Domain, fundamental      IV.1
Eisenstein’s irreducibility criterion      II.9
Equation of integral dependence      II.1
Equation of Pell — Fermat      IV.6
Equation, Diophantine      I.2
Euler’s $\varphi$-function      I.3
Euler’s criterion      V.5
Extension, abelian      VI.1
Extension, algebraic      II.3
Extension, cyclic      VI.1
Extension, cyclotomic      VI.1
Extension, Galois      VI.1
Extension, quadratic      VI.1
Fermat’s equation      I.2
Field, cubic      II.8
Field, cyclotomic      II.9
Field, number (or algebraic number field)      II.3
Field, quadratic      II.5
Finite type, module of      I.4
Fractional ideal      III.3
Fractions, ring of      V.1
Free module      I.4
Frobenius automorphism      VI.1 and VI.3
Fundamental units      IV.4 and IV.6
Galois extension      VI.1
Galois group      VI.1
Gaussian integers      V.6
Gaussian sum      V.5
Greatest common divisor or gcd      I.1
Group, decomposition      VI.2
Group, Galois      VI.1
Group, inertia      VI.2
Ideal, discriminant      II.7 and V.4
Ideal, fractional      III.3
Ideal, integral      III.3
Identity, Bezout’s      I.1
Imaginary quadratic field      II.5
Imbedding of a number field, canoni      IV.2
Index of ramification      V.2
Inertia group      VI.2
Integer of a number field      II.8
Integer or integral over a ring      II.1
Integer, Gaussian      V.6
Integral closure      II.1
Integral dependence equation      II.1
Integral ideal      III.3
Integrally closed ring      II.2
Invariant factors      I.5
Lattice in $\mathbb{R}^n$      IV.1
Law, quadratic reciprocity      V.5
Least common multiple or 1cm      I.1
Legendrc symbol      V.5
Minimal polynomial      II.3
Module of finite type      I.4
Module, free      I.4
Module, Noetherian      III.1
Module, torsion-free      I.5
Noetherian ring or module      III.1
Non-residue, quadratic      V.4
Norm      II.6
Norm of an ideal      III.5
Perfect field      II.4
Polynomial, characteristic      II.6
Polynomial, minimal      II.3
Prime field      I.7
Prime ideal      III.3
Prime, relatively      I.1
Primitive element of an extension      II.4
Primitive root modulo p      I.7
Primitive root of unity      I.6
Principal ideal      I.1
Principal ideal ring      I.1
Product of ideals      III.3
Quadratic extension      VI.1
Quadratic field      II.5
Quasi-algebraically closed field      I.7
Quaternions      V.7
Quaternions, Hurwitz      V.7
Ramification, index of      V.2
Ramified      cf.the Supplement
Ramify      V.3
Rank of a module      I.5
Real quadratic field      II.5
Reduced ring      IV.7
Relatively prime elements      I.1
Remains prime, a prime number or ideal      V.4
Represent zero      I.7
Residual degree      V.2
Residue, quadratic      V.4
Ring of fractions      V.1
Ring, Dedekind      III.4
Ring, Noetherian      III.I
Ring, reduced      IV.7
Root of unity, primitive      I.6
Root, primitive modulo p      I.7
Splitting of a prime number      V.4
Square-free integer      II.5
Sum, Gaussian      V.5
Symbol, Legendre      V.5
Torsion-free module      I.5
Trace      II.6
Transcendental element      II.3
Units of a number field      IV.4
Units of a ring      I.1
Volume of a lattice      IV.1
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте