Авторизация
Поиск по указателям
Devaney R.L., Keen L. — Chaos and Fractals: The Mathematics Behind the Computer Graphics
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Chaos and Fractals: The Mathematics Behind the Computer Graphics
Авторы: Devaney R.L., Keen L.
Аннотация: This volume contains the proceedings of a highly successful AMS Short Course on Chaos and Fractals, held during the AMS Centennial Celebration in Providence, Rhode Island in August 1988. Chaos and fractals have been the subject of great interest in recent years and have proven to be useful in a variety of areas of mathematics and the sciences. The purpose of the short course was to provide a solid introduction to the mathematics underlying the notions of chaos and fractals. The papers in this book range over such topics as dynamical systems theory, Julia sets, the Mandelbrot set, attractors, the Smale horseshoe, calculus on fractals, and applications to data compression. The authors represented here are some of the top experts in this field. Aimed at beginning graduate students, college and university mathematics instructors, and non-mathematics researchers, this book provides readable expositions of several exciting topics of contemporary research.
Язык:
Рубрика: Математика /Математическая Физика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1989
Количество страниц: 148
Добавлена в каталог: 24.04.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
"Hot fudge" 123
"Snowflake" 115
Abstract Mandelbrot set 100
Accessible boundary point 49
Accumulation set 69
Affine transformations 128
Arzela — Ascoli theorem 60
AT-quasi-self-similar 65
Attracting 63 64 66 72
Attracting cycle 79
Attracting fixed point 4 66
Attracting periodic point 63
Attracting set 39
Attractive basin 66 80
Attractive cycle 66 70
Attractor 38 131
Base of attraction 38
Basin boundary metamorphoses 52
Basin of attraction 42
Bifurcation 7
Bifurcation diagram 11
Bifurcation set 81
Birkhoff, G.D. 51
Blanchard, P. 65 77
Borel measure 138
Bounded density 113
Box dimension 111
Branner 58
Brolin, H. 77
Brooks, R. 77
Camacho 65
Cantor set 14 32 71 115
Caratheodory 49
Cartwright and Littlewood 52
Cayley, A. 77
Cellular 93
Center of hyperbolic component 86
Chaos 17
Chaotic behavior 57 58
Chaotic trajectory 42
Collage theorem 135
Comparable net measures 111
Completely invariant 60 61 62 63 70
Completely invariant components 70
Complex exponential 22
Computer graphics 141
Condensation set 133 134
Condensation transformation 134
Connected 73
Connectivity 70 72
Continued fractal 118
Continued fraction 118
Contraction 113
Contraction mappings 130
Contraction ratio 113
Contractivity factor 134 136
Cremer 68
Critical 63
Critical point 58 64 66 67 69 70 73 78
Critical value 58 78
Cross section 28
CYCLE 6 78
Degree 58
Degree (of a rational map) 58
Dendrite 70 93
Denjoy counterexample 122
density 112 113
Deterministic algorithm 132
Devaney 57
Diameter 109
Diffeomorphism 115
Diophantine 68
Domain of attraction 38
Douady Rabbit 95
Douady, A. 1 73 77
Douady, A. and Hubbard, J.H. 91 98 102
Douady, A., Hubbard, J.H. and Sullivan, D. 85
Dynamical plane 78
Dynamical system behaves chaotically 60
Dynamical systems 57 58
Dynamically defined foliation 66
Eigenvalue 63 78
Elton’s ergodic theorem 128
Equicontinuous 60
Equipotential 92
Eventually fixed 4
Eventually periodic 65 66
Eventually periodic domains 65
examples 69
Exceptional set 63
expanding 64 73
Expanding maps 64
External argument 93
External rays 93
Fatou, P. 60 65 68 77 79 80
Feigenbaum 10
Ferns 127
Filled-in Julia set 80
First return map 2
Fisher, Y. 77 78 82
Fixed point 4 28
Flexed image 122
Flexible 122
Flower Theorem 67
Foliation 66 67
Fractal 1 14 109 127
Fractal boundary 47
Fractal geometry 127
Fundamental theorem of calculus 121
Generate 114
Golden mean 118
Grand orbit equivalent 66
Grand orbit relation 67
Graphical analysis 4
graphs 118
Green’s function 88
Guckenheimer’s example 62 70
Hausdorff dimension 109 110
Hausdorff distance 129
Hausdorff measure 73 109 110 111
Hausdorff metric 114
Hausdorff outer measure 110
Herman 65 69
Herman ring 69 70 73
Hoelder 120
Holmes 57
Homeomorphism 115
Homoclinic point 30
Homoclinic tangency 53
Horseshoe map 31
Hubbard, J.H. 1 77 82
Hutchinson metric 138
Hyperbolic 29
Hyperbolic component 83
Hyperbolicity conjecture 83
IFS 131
IFS code 132
Immediate attractive basin 66 67
Indifferent cycle 79
Infinitely connected 71
Internal argument 84
Invariant 113 122
Invariant foliation 69
Invariant measure 139
Iterated function system 131
Iteration 2
Itinerary 15
Julia set 1 18 60 61 62 64 65 70 71 80
Julia, G. 60 65 68 77 80
K-quasi-isometry 65
Koch curve 115
Lambda lemma 30
Lavaurs algorithm 99
Lebesgue density theorem 112
Lebesgue measure 110
Limb of internal argument p/q 84
Linearization 29
Lipschitz 115
Locally connected 94 97
Locally finite 111
Locally positive 111
Logistic equation 3
Lowest terms 58
Loxodromic Mapping Conjecture 123
Lyapunov exponent 41
Mandelbrot 1 77 82 108
Mandelbrot set 75 81
Matelski, P. 77
Mather, J. 52
Melnikov’s method 34
Milnor, J. 83 98
Minimal 122
Misiurewicz point 93
Montel’s theorem 60 61 62 63 102
Morse — Sard theorem 120 121
Multiplier 78
Net 112
Net measure 112
Neutral 63 64
Neutral cycle 79
Neutral periodic cycle 68
Newton’s method 58
Norm 109
normal 60
Normal family 60 62 101
Orbit 2 59 78
Parabolic 72
Parabolic cycle 67 70
Parabolic periodic cycle 67
Parameter plane 78
Parameters 58
Peano curve 115
Peitgen, H.-O. 78
Period q-doubling bifurcation 84
Period-doubling bifurcation 8 84
Period-p periodic cycle 63
Periodic 66
Periodic cycle 66 68
Periodic orbit 6 28 78
Periodic point 63
Phase-space 28
Poincare 122
Poincare linearization 63
Poincare map 2
Poincare metric 59
POINTS 63
Polynomial-like mappings 103
Post-critical set 59 68 73
Preperiodic orbit 78
Principal vein 93
Quadratic maps 57
Quasi-arc 117
Quasi-circle 117
Quasi-isometries 109
Random iteration algorithm 132
Rational map 57 58 59
Repelling 63
Repelling cycle 79
Repelling fixed point 4
Repelling periodic 64
Repelling periodic points 64
Richter, P. 78
Riemann mapping theorem 59
Rigid 113
Root of hyperbolic component 86
Rotation number 51
S-dimensional density 113
S-measure 110
S-set 111
Saddle node bifurcation 7
Saddle point 29
Sarkovskii’s theorem 19
Schroeder 64
Schwarz lemma 59 64
Seifert conjecture 123
Self-similar 65 113
Sensitive dependence 17 62
Sensitive dependence on initial conditions 33
Shift automorphism 14
Shishikura 65 66 73
Siegel disk 67 70
Siegel, C. 65 68 77
Sierpinski triangle 131
Similarity dimension 115
Similitude 115
Simple saddle-node bifurcation 23
Simply connected 72
Sink 4 29
Smale — Birkhoff homoclinic theorem 34
Source 4 29
Stable 30 62 64
Stable domains 66
Stable manifold 30 47
Stable point 60
Stable set 71 80
State-space 28
Strange attracting set 39
Strange Attractor 38
Structural stability 33
Subharmonic 28
Subshift of finite type 22
Sullivan, D. 65 66 77
Super-attracting 63 64 66
Super-attracting periodic points 64
Super-attracting stable domain 70
Super-attractive cycle 66 70
Super-attractive periodic point 66
Superattracting cycle 79
Symbolic dynamics 12 33
Tan Lei 102
Topological conjugacy 33
Topological dimension 109
Topologically transitive 17
Uniformization theorem 59 66 67
Unstable 64
Unstable manifold 30 47
Unstable point 62
Unstable set 60
Unstable subspaces 30
Wandering 65
Weierstrass functions 120
Whitney counterexample 121
Whitney extension theorem 120
Yorke 57
Реклама