Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Matousek J. — Lectures on Discrete Geometry (some chapters)
Matousek J. — Lectures on Discrete Geometry (some chapters)

Читать книгу
бесплатно

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Lectures on Discrete Geometry (some chapters)

Автор: Matousek J.

Язык: en

Рубрика: Математика/Геометрия и топология/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2002

Количество страниц: 364

Добавлена в каталог: 19.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$A+B$ (Minkowski sum)      280
$A_k(n)$ (-kth. function in Ackermann hierarchy)      167
$B^n$ (unit ball in $R^n$)      11
$C_n$ (Hamming cube)      314
$D(\Delta)$ (denning set)      152
$e(\preceq) = |E(\preceq)|$      286
$E(\preceq)$ (linear extensions)      286
$e(_Y_1, \ldots, Y_k)$ (number of edges on the $Y_i$)      214
$f_k(P)$ (number of k-faces)      96
$I(\Delta)$ (intersecting objects)      149
$I_{1circ}(m, n)$ (number of point-unit circle incidences)      50
$I_{circ}(m, n)$ (number of point-circle incidences)      53
$K^k(t)$ (complete k-partite hypergraph)      204
$K_n$      12
$K_{r, s}$ (complete bipartite graph)      69
$K_{r, s}$-free graph      69 72
$log^*a$ (iterated logarithm)      11
$P(\preceq)$ (order polytope)      286
$S^n$ (unit sphere in $\mathbf R^{n+1})      295
$T_{col}(d, r)$ (colored Tverberg number)      194
$V_n$ (volume of unit n-ball)      293
$X^*$ (dual set)      82 (5.1.3)
$\alpha(G)$ (independence number)      274
$\alpha(n)$ (inverse Ackermann)      167
$\binom{V}2$      11
$\chi(G)$ (chromatic number)      274
$\chi(G, w)$ (weighted chromatic number)      275
$\Delta(C)$ (lattice constant)      35
$\ell_1$-ball      see Crosspolytope
$\ell_p$ (countable sequences with $\ell_p$-norm)      333
$\ell_p$-novm.      333
$\ell_p^d$ ($\mathbf R^d$ with $\ell_p$ norm)      333
$\eta$-dense set      295
$\eta$-net      295
$\eta$-net, application      304 318 320 339 342
$\eta$-separated set      295
$\frac12-\frac13$ conjecture      290
$\Gamma(x)$ (Gamma function)      293
$\lambda_i(C, \Lambda)$ (i-th successive minimum)      35
$\lambda_s(n)$ (maximum length of DS sequence)      161
$\langle x, y\rangle$ (scalar product)      11
$\lceil x\rceil$ (ceiling function)      11
$\lfloor x\rfloor$ (floor function)      11
$\mathbf E[X]$ (expectation)      11
$\mathbf R^d$      13
$\mathcal D$ (duality)      83
$\mathcal D_0$ (duality)      80 (5.1.1)
$\mathcal K_2$ (planar convex sets)      227
$\mathcal L_2$ (squared Euclidean metrics)      349
$\mathcal P_{d, D}$ (sets definable by polynomials)      232 (10.3.2)
$\mathrm{HD}_d(p,q)$ ((p,q)-theorem)      243 (10.5.1)
$\mathrm{HFAC}_d(n)$ (number of halving facets)      253
$\mathrm{KFAC}_d(n, k)$ (maximum number of k-facets)      252
$\mathscr{F}|_Y$ (restriction of set system)      227
$\nu(T)$ (packing number)      222
$\nu^*{F)$ (fractional packing number)      222
$\nu_k(\mathcal F)$ (simple k-packing number)      225 (Ex.4)
$\Omega(.)$ (asymptotically at least)      11
$\omega(G)$ (clique number)      274
$\omega(G, w)$ (weighted clique number)      275
$\overline{G}$ (graph complement)      274
$\partial A$ (boundary)      11
$\Phi_d(m)=\sum_{i=1}^d\binom{n}i$      125 (6.1)
$\pi_{\mathcal F}$ (shatter function)      228
$\psi(m, n)$ (length of m-decomposable DS-sequence)      171
$\rho{Y_1, \ldots, Y_k)$ (hypergraph density)      214
$\sigma(n)$ (lower envelope of segments, complexity)      160
$\tau(\mathcal F)$ (transversal number)      221
$\tau^*(\mathcal F)$ (fractional transversal number)      222
$\Theta(.)$ (same order)      11
$\varepsilon$-approximation      231
$\varepsilon$-net      226 (10.2.1) 227
$\varepsilon$-net, size      228 (10.2.4)
$\varepsilon$-net, weak      248 (10.6.3)
$\varepsilon$-net, weak, for convex sets      240 (10.4.1)
$\varepsilon$-pushing      101
$\varphi(d)$ (Euler's function)      58
$|X|$      11
$||x||$ (Euclidean norm)      11
$||x||_1$ ($\ell$-norm)      85
$||x||_K$ (norm induced by K)      321
$||x||_p$ ($\ell_p$-norm)      332
$||x||_Z$ (general norm)      321
$||x||_\infty$ (maximum norm)      85 333
$||x||_{Lip}$ (Lipschitz norm)      332
(p,q)-condition      243
(p,q)-theorem      243 (10.5.1)
(p,q)-theorem, for hyperplane transversals      246 (10.6.1)
0 (.) (asymptotically at most)      11
A(n) (Ackermann function)      167
Ackermann function      167
AffDep(a)      108
Affine combination      13
Affine dependence      14
Affine Gale diagram      110
Affine hull      13
Affine mapping      15
Affine subspace      13
Affinely isomorphic arrangements      131
AffVal(a)      108
Alexandrov — Fenchel inequality      284
Algebraic geometry      129
Algebraic number      32 (Ex.4)
Algebraic surface patches, lower envelope      181
Algebraic surface patches, single cell      183 (7.7.2)
Algebraic surfaces, arrangement      128
Algebraic surfaces, decomposition problem      156
Algorithm, convex hull      87 104
Algorithm, for $\ell_2$-embedding      351
Algorithm, for volume approximation      297 302
Algorithm, Goemans — Williamson for MAXCUT      353 (Ex.5)
Algorithm, greedy      225 225
Algorithm, LLL      36
Algorithm, simplex, randomized      94
Almost convex set      47 48
Almost spherical projection      329
Almost spherical section of convex body      322 (14.4.5) 325
Almost spherical section of crosspolytope      323 329
Almost spherical section of cube      320
Almost spherical section of ellipsoid      319 (14.4.1)
Antichain      278 (Ex.4)
Approximation by fraction      31 (2.1.3) 32 32
Approximation of volume      302
Approximation of volume, hardness      297
ARC      60
Arithmetic progression, generalized      54
Arithmetic progression, primes in      58 (4.2.4)
Arithmetic progression, Szemeredi's theorem      217
Arrangement of arbitrary sets      128
Arrangement of hyperplanes      124
Arrangement of hyperplanes, number of cells      125 (6.1.1)
Arrangement of hyperplanes, unbounded cells      126 (Ex.2)
Arrangement of lines      50
Arrangement of pseudolines      129 133 255
Arrangement of pseudosegments      255
Arrangement of segments      127
Arrangement, affine isomorphism      131
Arrangement, central      126
Arrangement, isomorphism      131
Arrangement, many cells      51 53 63 147
Arrangement, realization space      134
Arrangement, simple      125
Arrangement, stretchable      131 134
Arrangement, triangulation      75 (Ex.2) 154
Art gallery      234 238
Atomic lattice      90
B(x, r) (r-ball centered at x)      11
Balanced line      265
Balinski's theorem      89
Ball, $\ell_1$      see Crosspolytope
Ball, random point in      294
Ball, smallest enclosing      24 (Ex.5)
Ball, volume      293
Banach spaces, local theory      309 315
Banach — Mazur distance      323
Bandwidth      363
Basis (lattice)      32
Basis, reduced      36
Bezdek's conjecture      52
bi-Lipschitz mapping      332
Binomial distribution      229
Bipartite graph      12
Bisection width      62
bisector      118
Blaschke — Santalo inequality      301
Body, convex, almost spherical      319
Body, convex, almost spherical section      322 (14.4.5) 325
Body, convex, approximation by ellipsoids      305 (13.4.1)
Body, convex, lattice points in      29—38
Body, convex, volume approximation      297 302
Borsuk — Ulam theorem, application      26 196
Bottom-vertex triangulation      154 156
Brick set      282
Brunn — Minkowski inequality      280 (12.2.2)
Brunn — Minkowski inequality, application      311 313
Brunn — Minkowski inequality, dimension-free form      284 (Ex.5)
Brunn's inequality      280 (12.2.1)
Brunn's inequality, application      289
Busemann — Petty problem      295
Cage representation      93
Canonical triangulation      see Bottom-vertex triangulation
CAP      40
Cap, spherical (volume)      313
Caratheodory's theorem      17 (1.2.3) 19
Caratheodory's theorem, application      191 200 300
Caratheodory's theorem, colorful      190 (8.2.1)
Caratheodory's theorem, colorful, applicaton      193
Cauchy — Schwarz inequality      12
Cell of arrangement      51 124 127
Cell, complexity, in higher dimensions      183 184
Cell, complexity, in the plane      169
Center transversal theorem      27 (1.4.4)
Centerpoint      25 (1.4.1) 202
Centerpoint theorem      26 (1.4.2) 195
Central arrangement      126
Chain      278 (Ex.4)
Chain polytope      291
Chebyshev's inequality      229
Chirotope      208
Chromatic number      274
Circles, cutting lemma      75
Circles, incidences      53 67 67 73 73 76
Circles, touching (and planar graphs)      93
Circles, unit, incidences      50 55 57 63 73
Circles, unit, Sylvester-like result      52
Circumradius      299 (13.2.2)
Circumradius, approximation      302
Clarkson's theorem on levels      137 (6.3.1)
Clique number      274
Closed from above (or from below)      46
Closest pair, computation      119
Coatomic lattice      91
Colored Helly theorem      189 (Ex.2)
Colored Tverberg theorem      194 (8.3.3)
Colored Tverberg theorem, application      204
Colored Tverberg theorem, for $r=2$      196
Colorful Caratheodory theorem      190 (8.2.1)
Colorful Caratheodory theorem, applicaton      193
Combination, affine      13
Combination, convex      17
Combinatorially equivalent polytopes      90 (5.3.4)
Combinatorics, polyhedral      273
Compact set      12
Comparability graph      278 (Ex.4) 291
Complete graph      12
Complex plane, point-line incidences      52
Complex, simplicial, d-collapsible      189
Complex, simplicial, d-Leray      189
Complex, simplicial, d-representable      189
Complex, simplicial, Van Kampen-Flores      342
Complexity, of cell      159
Compression, path      169
Concentration for Hamming cube      315 (14.2.3)
Concentration for sphere      310 (14.1.1)
Concentration Gaussian      314 (14.2.2)
Concentration of projection      334 (15.2.2)
Conductance (of graph)      346
Cone of squared Euclidean metrics      349
cone(X)      192
Cone, convex      20 (Ex.5) 192
Cone, metric      105 349
Conjecture, $\frac12-\frac13$      290
Conjecture, Bezdek's      52
Conjecture, d-step      94
Conjecture, Dirac — Motzkin      56
Conjecture, Fueredi — Hajnal      170
Conjecture, Gruenbaum — Motzkin      248
Conjecture, Hirsch      94
Conjecture, Kalai's      195
Conjecture, perfect graph, strong      275
Conjecture, perfect graph, weak      275
Conjecture, Purdy's      54
Conjecture, Reay's      19
Conjecture, Ryser's      225
Conjecture, Sierksma's      196
Conjecture, Stanley — Wilf      170
Connected graph      12
Constant, lattice      35
Continuous motion argument      268
Continuous upper bound theorem      112
conv(.X") (convex hull)      17
Convex body, almost spherical      319
Convex body, almost spherical section      322 (14.4.5) 325
Convex body, approximation by ellipsoids      305 (13.4.1)
Convex body, lattice points in      29—38
Convex body, volume approximation      297 302
Convex combination      17
Convex cone      20 (Ex.5) 192
Convex function      12
Convex hull      17
Convex hull of random points      99 305
Convex hull, algorithm      87 104
Convex independent set      40 (3.1.1)
Convex independent set in grid      43 (Ex.2)
Convex polygons, union complexity      185
Convex polyhedron      85
Convex polytope      85
Convex polytope, almost spherical, number of facets      320 (14.4.2)
Convex polytope, integral, cvirefex:hoffm-int      278
Convex polytope, number of      135 (Ex.3)
Convex polytope, realization      134
Convex polytope, symmetric, number of facets      324 (14.4.2)
Convex polytope, volume, lower bound      303
Convex polytope, volume, upper bound      297 (13.2.1)
Convex polytopes, union complexity      185
Convex position      40
Convex set      17 (1.2.1)
Convex sets, in general position      42
Convex sets, intersection patterns      189
Convex sets, transversal      243 (10.5.1)
Convex sets, upper bound theorem      189
Convex sets, VC-dimension      227
Copies, similar (counting)      53 56
cr(G) (crossing number)      60
cr(X) (crossing number of halving-edge graph)      268
Criterion, Gale's      97 (5.4.4)
Cross-ratio      54
Crossing (in graph drawing)      60
Crossing edges, pairwise      169
Crossing number      60
1 2 3 4 5 6
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2019
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте