Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Matousek J. — Lectures on Discrete Geometry (some chapters)
Matousek J. — Lectures on Discrete Geometry (some chapters)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Lectures on Discrete Geometry (some chapters)

Автор: Matousek J.

Язык: en

Рубрика: Математика/Геометрия и топология/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2002

Количество страниц: 364

Добавлена в каталог: 19.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
h-vector      102
Hadwiger — Debrunner (p,q)-problem      243
Hadwiger's transversal theorem      248
Hahn — Banach theorem      19
Halfspace      15
Halfspaces, VC-dimension      232 (10.3.1)
Hall's Marriage Theorem      225
Halving edge      252
Halving facet      252
Halving facet, interleaving lemma      262 (11.3.1)
Halving facet, interleaving lemma, application      263 268 271
Ham-sandwich theorem      26 (1.4.3)
Ham-sandwich theorem, application      209
Hammer polytope      325 (Ex.1)
Hamming cube      314
Hamming cube, embedding into $\ell_2$      343
Harper's inequality      314
Height      287
Helly number      23
Helly order      250 (Ex.4)
Helly's theorem      21 (1.3.2)
Helly's theorem, application      23 (Ex.2) 24 25 83 188 191
Helly's theorem, colored      189 (Ex.2)
Helly's theorem, fractional      187 (8.1.1)
Helly's theorem, fractional, application      200 203 245
Helly's theorem, fractional, for line transversals      247 (10.6.2)
Helly-type theorem      248 250
Helly-type theorem for containing a ray      24 (Ex.6)
Helly-type theorem for lattice points      279 (Ex.7)
Helly-type theorem for line transversals      84 (Ex.9)
Helly-type theorem for separation      25 (Ex.9)
Helly-type theorem for visibility      25 (Ex.7)
Helly-type theorem for width      23 (Ex.4)
Hierarchically well-separated tree      364
High above      45
Higher-order Voronoi diagram      119
Hilbert space      333
Hirsch conjecture      94
Horton set      45
Horton set in $\mathbf{R}^d$      47
Hull, affine      13
Hull, convex      17
Hull, convex, algorithm      87 104
Hypergraph      203
Hyperplane      14
Hyperplane transversal      246 (10.6.1) 248
Hyperplane, linear      108
Hyperplanes, arrangement      124
I(m, n) (number of point-line incidences)      49
I(P, L) (point-line incidences)      49
Incidence matrix      223
Incidences      49
Incidences, point-circle      53 67 67 73 73 76
Incidences, point-curve      53
Incidences, point-line      49 (4.1.1)
Incidences, point-line, in the complex plane      52
Incidences, point-line, lower bound      57 (4.2.1)
Incidences, point-plane      53
Incidences, point-unit circle      50 55 57 73
Incidences, point-unit circle, upper bound      63 (Ex.2)
Independence number      274
Induced subgraph      274
Induced subhypergraph      203
Inequality, Alexandrov — Fenchel      284
Inequality, Blaschke — Santalo      301
Inequality, Brunn — Minkowski      280 (12.2.2)
Inequality, Brunn — Minkowski, application      311 313
Inequality, Brunn — Minkowski, dimension-free form      284 (Ex.5)
Inequality, Brunn's      280 (12.2.1)
Inequality, Cauchy — Schwarz      12
Inequality, Chebyshev's      229
Inequality, Harper's      314
Inequality, isoperimetric      312—316
Inequality, isoperimetric, reverse      316
Inequality, Jensen's      12
Inequality, Prekopa — Leindler      283 285
Inequality, Sobolev, logarithmic      315
Inradius      299 (13.2.2)
Inradius, approximation      302
Integer programming      35
Interpolation      115
Intersection graph      135 (Ex.2)
Inverse Blaschke — Santalo inequality      301
Isometric embedding      332
Isomorphic arrangements      131
Isomorphic arrangements, affinely      131
Isomorphic graphs      12
Isomorphism of hypegraphs      203
Isoperimetric inequality      312—316
Isoperimetric inequality, reverse      316
Jensen's inequality      12
John's lemma      305 (13.4.1)
John's lemma, application      324 326
Johnson — Lindenstrauss flattening lemma      334 (15.2.1)
Johnson — Lindenstrauss flattening lemma, application      340
Join      90
K(m, n) (number of edges of m cells)      51
k-edge      252
k-facet      251
k-flat      14
k-hole      44
k-hole, modulo q      47
k-interior point      20
k-partite hypergraph      203
k-set      251
k-set, polytope      258 (Ex.7)
k-uniform hypergraph      203
Kalai's conjecture      195
Kernel      24 (Ex.7)
KFAC(X, k) (number of k-facets)      252
Kirchberger's theorem      25 (Ex.9)
Knapsack problem      36
Koebe's representation theorem      93
Koevari — Sos — Turan theorem      69 (4.5.2)
Konig's edge-covering theorem      225 278
Krasnosel'skii's theorem      25 (Ex.7)
Kruskal — Hoffman theorem      278 (Ex.6)
Lagrange's four-square theorem      38 (Ex.2.3.1)
Laplace matrix      347
Largest empty disc, computation      119
Lattice basis theorem      34 (2.2.2)
Lattice constant      35
Lattice packing      35
Lattice point      29
Lattice point, computation      35
Lattice point, Helly-type theorem      279 (Ex.7)
Lattice, face      90
Lattice, general definition      33
Lattice, given by basis      32
Lattice, shortest vector      36
Lawrence's representation theorem      133
Lemma, cutting      70 (4.5.3) 72
Lemma, cutting, application      248
Lemma, cutting, for circles      75
Lemma, cutting, higher-dimensional      154 (6.5.3)
Lemma, cutting, lower bound      74
Lemma, cutting, proof      74 77 148 156 238
Lemma, Dvoretzky — Rogers      326 (14.6.2) 329
Lemma, Erdos — Szekeres      278 (Ex.4)
Lemma, Farkas      19 19 20
Lemma, first selection      200 (9.1.1)
Lemma, first selection, application      241
Lemma, first selection, proofs      202
Lemma, halving-facet interleaving      262 (11.3.1)
Lemma, halving-facet interleaving, application      263 268 271
Lemma, John's      305 (13.4.1)
Lemma, John's, application      324 326
Lemma, Johnson — Lindenstrauss flattening      334 (15.2.1)
Lemma, Johnson — Lindenstrauss flattening, application      340
Lemma, Levy's      317 (14.3.2) 318
Lemma, Levy's, application      318 335
Lemma, Lovasz      263 (11.3.2)
Lemma, Lovasz, exact      264 266
Lemma, Lovasz, planar      265 (Ex.1)
Lemma, positive-fraction selection      218 (9.5.1)
Lemma, Radon's      21 (1.3.1) 23
Lemma, Radon's, application      22 23 212 232
Lemma, Radon's, positive-fraction      211
Lemma, regularity, for hypergraphs      214 (9.4.1)
Lemma, regularity, for hypergraphs, application      217 (Ex.2) 219
Lemma, regularity, Szemeredi's      214 217
Lemma, same-type      208 (9.3.1)
Lemma, same-type, application      211 219
Lemma, same-type, partition version      211
Lemma, second selection      202 (9.2.1)
Lemma, second selection, application      219 264
Lemma, second selection, lower bounds      206 (Ex.2)
Lemma, second selection, one-dimensional      206 (Ex.1)
Lemma, shatter function      228 (10.2.5)
Lemma, shatter function, application      234
Lens (in arrangement)      257 (Ex.5) 257
Level      76 136
Level, and higher-order Voronoi diagrams      119
Level, at most k, complexity      137 (6.3.1)
Level, complexity and k-sets      252
Level, for segments      179 (Ex.2)
Level, for triangles      176
Level, simplification      76
Levy's lemma      317 (14.3.2) 318
Levy's lemma, application      318
LinDep($\overline a$)      107
Line pseudometric      353 (Ex.2) 358
Line transversal      84 (Ex.9) 246 248
Line, balanced      265
Linear extension      285
Linear form      37 (Ex.4)
Linear hyperplane      108
Linear ordering      285
Linear programming      19
Linear programming, algorithm      94
Linear programming, duality      223 (10.1.2)
Linear subspace      13
Linearization      232
Lines, arrangement      50
LinVal($\overline a$)      107
Lipschitz function, concentration      317 (14.3.2)
Lipschitz mapping      316
Lipschitz mapping, extension      336
Lipschitz norm      332
Lipton — Tarjan theorem      62
LLL algorithm      36
Local density      363
Local theory of Banach spaces      309 315
Location, in planar subdivision      114
Loewner — John ellipsoid      307
Lovasz lemma      263 (11.3.2)
Lovasz lemma, exact      264 266
Lovasz lemma, planar      265 (Ex.1)
Lower bound theorem, generalized      104
Lower bound theorem, generalized, application      264
Lower envelope of curves      160 179
Lower envelope of segments      159
Lower envelope of segments, lower bound      163 (7.2.1)
Lower envelope of simplices      178
Lower envelope of triangles      175 (7.5.1) 178
Lower envelope, superimposed projections      184
LPS-expander      341
m($\ell$, n) (maximum number of edges for girth > $\ell$)      337
Manhattan distance      see $\ell_1$-norm
Many cells, complexity      51 53 63 147
Mapping, affine      15
Mapping, bi-Lipschitz      332
Mapping, Lipschitz      316
Mapping, Lipschitz, extension      336
Mapping, Veronese      232
Marriage theorem, Hall's      225
Matching      222
Matching number      See packing number
Matching polytope      273 277
Matrix, forbidden pattern      170
Matrix, incidence      223
Matrix, Laplace      347
Matrix, rank and signs      135 (Ex.4)
Matroid, oriented      133
MAXCUT problem      353 (Ex.5)
Maximum norm      see $\ell_\infty$-norm
Measure concentration for Hamming cube      315 (14.2.3)
Measure concentration for sphere      310 (14.1.1)
Measure concentration, Gaussian      314 (14.2.2)
Measure on $S^{n-1}$, uniform      310
Measure on k-dimensional subspaces      317
Measure on SO(n) (Haar)      318
Measure, Gaussian      313
Measure, uniform      227
med(f) (median of f)      316
Medial axis transform      117
Median      25 316
Meet      90
Membership oracle      298 302
Method, double-description      87
Method, ellipsoid      352
Metric cone      105 349
Metric polytope      105
Metric space      331
Metric, line      353 (Ex.2) 358
Metric, of negative type      352
Metric, planar-graph      360
Metric, shortest-path      360
Metric, squared Euclidean, cone      349
Metric, tree      360 364 365 365 365
Milnor — Thom theorem      128 132
Minimum spanning tree      120 (Ex.5)
Minimum, successive      35
Minkowski sum      280
Minkowski — Hlawka theorem      35
Minkowski's second theorem      35
Minkowski's theorem      29 (2.1.1)
Minkowski's theorem for general lattices      33 (2.2.1)
Minor, excluded, and metric      360
Mixed volume      284
Molecular modeling      119
Moment curve      97 (5.4.1)
Monotone subsequence      278 (Ex.4)
Moore graph      341
Motion planning      114 119 184
Multigraph      11
Multiset      11
Nearest neighbor searching      114
Neighborhood, orthogonal      299
Nerve      189
Nonrepetitive segment      171
Norm      321
Norm, $\ell_p$      333
Norm, $\ell_\infty$      333
Norm, Lipschitz      332
Norm, maximum      see $\ell_\infty$-norm
Normal distribution      314 328
Number crossing      60
Number crossing and forbidden subgraph      62
Number crossing, odd      62
Number crossing, pairwise      62
Number matching      see Packing number
Number packing      222
Number piercing      see Transversal number
Number transversal      221
Number transversal, bound using $\tau^*$      225 231
Number, algebraic      32 (Ex.4)
Number, chromatic      274
Number, clique      274
Number, fractional packing      222
1 2 3 4 5 6
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте