Авторизация
Поиск по указателям
Tuy H. — Convex analysis and global optimization
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Convex analysis and global optimization
Автор: Tuy H.
Аннотация: Due to the general complementary convex structure underlying most nonconvex optimization problems encountered in applications, convex analysis plays an essential role in the development of global optimization methods. This book develops a coherent and rigorous theory of deterministic global optimization from this point of view. Part I constitutes an introduction to convex analysis, with an emphasis on concepts, properties and results particularly needed for global optimization, including those pertaining to the complementary convex structure. Part II presents the foundation and application of global search principles such as partitioning and cutting, outer and inner approximation, and decomposition to general global optimization problems and to problems with a low-rank nonconvex structure as well as quadratic problems. Much new material is offered, aside from a rigorous mathematical development.
Audience: The book is written as a text for graduate students in engineering, mathematics, operations research, computer science and other disciplines dealing with optimization theory. It is also addressed to all scientists in various fields who are interested in mathematical optimization.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1998
Количество страниц: 353
Добавлена в каталог: 05.11.2010
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
-extension 138 287
-valid concavity cut 138
-subdivision 149
-approximate, optimal solution 166
-subgradient 70
Affine function 41
Affine set, manifold 3
Affinely independent 5
Approximate subdifferential 69
Barycentric coordinates 6
Basic concave programming, problem (BCP) 133
Basic outer approximation, theorem 180
Bilinear programming 290
Bisection 141
Bisection of ratio a 141
Bisection, exact 141
Branch and bound 155
Branch and cut 155
Branch and select 153
Canonical cone 139
Canonical d.c. programming, problem 118
Caratheodory core 16
Caratheodory’s theorem 14
Cl 53
Closed function 53
Closed, open 6
Closure of a convex function 53
Coercive 200
Combined algorithm 190
Complementary convex set 84 117
Complementary convex structure 83
Concave function 41
Concave majorant 100
Concave production-transportation, problem 262
Concave quadratic programming, problem 287
Concavity cut 136
Cone 7 143
Conical subdivision 143
conjugate 72
Constancy space 52
Convex envelope 48
Convex function 41
Convex hull 13
Convex hull of a function 48
Convex hull of a set 13
Convex inequality 56
Convex minorant 100
Convex set 6
Convex-concave 77
Convg 48
CS restart algorithm for BCP 148
CS restart algorithm for LRCP 169
Cutting plane method 177
D.c set 95
d.c. function 83
D.c. programming 117
D.c. representation 88
D.c. structure 83
DC feasiblity problem 123
Decomposition 223
Decomposition by polyhedral annexation 233
Decomposition by projection 227
Decoupling relaxation 301
Dimension of a convex set 10
Dimension of a convex set of a convex function 53
Direction in which / is affine 53
Direction of recession 11
Directional derivative 65
Distance function 42 64
Distinguished point 154 177
Distinguished point, member 154
Dual DC feasibility problem 193
Dual problems 202
Dualization by polyhedral, annexation 233
EDGE 33
Edge property 164
Effective domain 41
Epigraph 41
Exact bisection 141
Exact selection 155
Exhaustive filter 141
Exhaustive subdivision process 143 7
Extreme direction 24
Extreme point 24
Face 23 31
Facet 32
Factorable function 87
Filter 141 153
Full dimension 10
Gauge 10
General concave minimization, problem 181
General nonconvex quadratic, problem 293
Generalized convex multiplicative, programming problems 250
Generalized linear program 127 285
Geometric programming 126 285
global 74
Global, -optimal solution 123
Global, maximizer 74
Global, minimizer 74
Halfspace 6
Indefinite quadratic program 291
Indicator function 42
Infimal convolution 48
L.s.c. hull 53
Lagrange dual problem 309
Lagrangian 309
Level set (lower,upper) 50
Lineality 26
Lineality of a convex function 53
Lineality of a convex set 26
Linear matrix inequality (LMI) 129
Linear multiplicative program 240
Linear program under LMI, constraints 316
Local minimizer 109
Local optimal solution 109
Locally convexifiable 301
Locally d.c 86
Location-allocation problem 112
Low rank nonconvex problem 223
Lower linearizable 296
Lower semi-continuous (l.s.c.) 51
Minimax theorem 78
Minimum concave cost network flow problem MCNFP 262
Minkowski functional 10
Minkowski’s theorem 27
Modulus of strong convexity 71
Monotonic functions 223
Monotonic reverse convex problem 255
Multiextremal 109
Net 151
Network constraints 261
Noncanonical d.c. problems 206
Nonconvex quadratic programming 277
Nonregular problems 167
Norm 9
Norm, dual 35
Norm, Euclidean 9
Norm, Tchebychev 9
normal 22
Normal cone 22
Normal procedure DC 151
NS (normal subdivision) rule 150
Optimal visible point algorithm 209
Optimal visible point problem 209
Outer approximation 177
Parametric approach 236
Parametric d.c. feasibility problem 169
Parametric d.c. inclusion 134 205
Partition via 160
Phase (global, local) 124
polar 28
Polyhedral annexation 192
Polyhedral convex set 30
Polyhedron 30
Polytope 34
Positively homogeneous 063
Preprocessing 125
Problem PTP(2) 271
Procedure 195
Procedure DC 148
Projection of a point on a convex set 23
Prototype branch and select, algorithm 154
Quadratic constraints 293
Quadratic function 044
Quadratic minimization over, ellipsoids 281
Qualified member 154
Quasiconcave function 077
Quasiconcave minimization 116
Quasiconjugate function 199
Quasiconvex function 50
Quasiconvex maximization 116
Radial partition (subdivision) 141
Rank 30
Rank of a convex function 53
Rank of a quadratic form 279
Recession (cone, direction) 12
Rectangular subdivision 169
Refinement of a subdivision 143
Reformulation-linearization 304
Regular problem 166
Regularity asumption 167
Relative boundary 10
Relative interior 10
Relief indicator method 212
Representation theorem 26
restart 152
Reverse convex 56
Reverse convex, constraint 116
Reverse convex, inequality 84 164
Reverse convex, programming 116 164
Robust set 119
S-shaped functions 93
Saddle-function 77
Saddle-point 77
Second quasiconjugate 201
Semi-continuous (lower, upper) 51
Semi-definite program 130
Separable basic concave program 161
Separation theorem, first 19
Separation theorem, second 20
Separator 97
Shapley- Folkman’s Theorem 015
Simple OA for CDC 189
Simple outer approximation 181
Simplicial subdivision 141
Special concave program CPL(1) 269
Stochastic transportation-location, problem 264
Strictly convex 74
Strictly quasiconcave function 238
Strongly convex 71
Strongly separated 20
Subdifferentiable 62
Subdifferential 62
Subdivision (partition) via 160
Subdivision processes 140 153
Subgradient 62
Support function 29 42
Supporting hyperplane 21
Supporting hyperplane, hafspace 21
Tight convex minorant 298
Transcending stationarity 122
Transcending the incumbent 119
Trust region subproblem 282
Two phase scheme 124
Unary matrix 294
Unary program 294
Upper envelope 46 7
Vertex 033
Visibility assumption 207
Weakly convex 105
Weber problem with attraction and repulsion 130
Реклама