Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Artin E. — The Gamma Function | 30, 35 |
Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 95 |
Agarwal R.P. — Difference Equations and Inequalities. Theory, Methods and Applications. | 857 |
Kedlaya K.S., Poonen B., Vakil R. — The William Lowell Putnam Mathematical Competition 1985–2000: Problems, Solutions, and Commentary | 58, 216 |
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 177, 214, 248, 282, 479 |
Abell M., Braselton J. — Differential Equations with Mathematica | 532 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 149 |
Spiegel M.R. — Mathematical Handbook of Formulas and Tables | 131—135 |
Henrici P. — Applied and Computational Complex Analysis. I: Power Series, Integration, Conformal Mapping, Location of Zeros. | 224, 225, 226, 229, 251, 374, 377, 577 |
Lee J.S., Miller L.E. — CDMA systems engineering handbook | 36—41 |
Doob J.L. — Stochastic processes | 150 |
Falconer K. — Fractal Geometry. Mathematical Foundations and applications | 188—190 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 159, App. A, Table 11.I |
Chung T.J. — Computational fluid dynamics | 69 |
Berger M. — A Panoramic View of Riemannian Geometry | 30 |
Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 206 |
Adler R.J. — An Introduction to Continuity, Extrema, and Related Topics for General Gaussian Processes | 16 |
Bulirsch R., Stoer J. — Introduction to numerical analysis | 88 |
Brandwood D. — Fourier Transforms in Radar and Signal Processing | 32 |
Apostol T.M. — Mathematical Analysis | 309 |
Mauch S. — Introduction to Methods of Applied Mathematics or Advanced Mathematical Methods for Scientists and Engineers | 799 |
Hayek S.I. — Advanced mathematical methods in science and engineering | 88, 135, 151, 161, 163, 383 |
McComb W.D. — Physics of Fluid Turbulence | 536 |
Felinger A. — Data analysis and signal processing in chromatography | 20 |
Hoffman J.D. — Numerical Methods for Engineers and Scientists | 608 |
Neta B. — Numerical solution of partial differential equations | 27, 30 |
Golub G.H., Ortega J.M. — Scientific Computing and Differential Equations : An Introduction to Numerical Methods | 251 |
Ferziger J.H., Peric M. — Computational Methods for Fluid Dynamics | 60, 61, 270 |
Enns R.H., Mc Guire G.C. — Nonlinear physics with mathematica for scientists and engineers | 211 |
Conte S.D., de Boor C. — Elementary numerical analysis - an algorithmic approach | 269ff. |
Mathews J.H., Fink K.D. — Numerical Methods Using MATLAB | 299 |
Lee M.H. — Mixed Automorphic Forms, Torus Bundles, and Jacobi Forms | 199 |
Kodaira K. — Complex manifolds and deformation of complex structures | 373 |
Messer R. — Linear Algebra: Gateway to Mathematics | 166 |
Coutinho S.C. — A primer of algebraic D-modules | 2 |
Wolf J.P. — The Scaled Boundary Finite Element Method | 155 |
Zienkiewicz O.C., Taylor L.R. — The finite element method (vol. 1, The basis) | 47, 167 |
Meyer C.D. — Matrix analysis and applied linear algebra | 299, 300 |
Silverman J.H. — The arithmetic of elliptic curves | 344, 345, 355, 356 |
Handscomb D.C. — Methods of numerical approximation | 16, 39 |
Garnett J.B. — Bounded Analytic Functions | 107, 273 |
Henrici P. — Applied and Computational Complex Analysis (Vol. 2) | 262, 446, 448 |
Henrici P. — Applied and Computational Complex Analysis (Vol. 3) | 260, 266, 267, 373, 389, 393, 410, 472, 536, 538, 540, 541, 543, 548, 563 |
Rudin W. — Real and Complex Analysis | 91, 267 |
Axler S., Bourdon p., Ramey W. — Harmonic function theory | 82, 97 |
Porter D., Stirling D.S.G. — Integral equations: a practical treatment, from spectral theory to applications | 354, 355, 362ff |
Hinch E.J. — Perturbation Methods | 29 |
Whittaker E.T., Watson G.N. — A Course of Modern Analysis | 160—193 (Chapter IX) |
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2) | 922 |
Abell M.L., Braselton J.P. — Mathematica by Example | 285 |
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 329 |
Weinberger H.F. — First course in partial defferential equations with complex variables and transform methods | 65, 66, 67, 77—88, 141—145, 298 |
Smirnov V.I. — Higher mathematics. Vol.2 | 397 |
Benson D. — Mathematics and music | 16, 29, 49 |
Goldstein H., Poole C., Safko J. — Classical mechanics | 14, 126, 574 |
Baker A. — Transcendental number theory | 49 |
Jensen F. — Introduction to Computational Chemistry | 15 |
Sadd M.H. — Elasticity: theory, applications, and numerics | 153 |
Williamson R.E., Crowell R.H., Trotter H.F. — Calculus of vector functions | 273 |
Szego G. — Orthogonal polynomials | 12, 14, 24, 25, 28, 38, 39, 244, 246, 253, 274, 289, 311, 314, 323, 347, 367. See Cesaro means |
Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 248 |
Brin M., Stuck G. — Introdution to dynamical system | 78 |
Douglas R.G. — Banach algebra techniques in operator theory | 55 |
Polya G., Latta G. — Complex Variables | 202 |
Becker A.A. — The Boundary Element Method in Engineering. A complete course | 231 |
Bellman R. — A brief introduction to theta functions | 4—7 |
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 117 |
Bronson R. — Differential Equations Crash Course | 120—121 |
Hand L.N., Finch J.D. — Analytical Mechanics | 402 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 23, 518 |
Mahmoud H.M. — Evolution of random search trees | 10, 20 |
Hancock H. — Theory of Maxima and Minima | 74 |
Franklin P. — Fourier Methods | 68 |
Gupta M.M., Jin L., Homma N. — Static and dynamic neural networks | 258 |
Wolkenhauser O. — Data Engineering: Fuzzy Mathematics in Systems Theory and Data Analysis | 31, 43, 49—50, 216, 249 |
Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 526, 528 |
Braselton J.P. — Maple by Example | 281 |
Garnett J.B. — Bounded Analytic Functions | 103 |
Dyke Ph.P.G. — Managing Mathematical Projects - with Success! | 89, 116 |
Borwein P, Erdelyi T — Polynomials and polynomial inequalities | 53 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 357, 358 |
Shafarevich I.R., Kostrikin A.I. (ed.) — Basic Notions of Algebra | 25, 143, 170, 177 |
Dudley R.M., Fulton W. (Ed) — Real Analysis and Probability | 171—173, 184, 240—243, 246—247, 314 |
Enderton H.B. — Elements of set theory | 14 |
Debnath L. — Linear Partial Differential Equations for Scientists and Engineers | 171, 173 |
Dacorogna B. — Direct Methods in the Calculus of Variations | 134 |
Rutherford D.E. — Vector Methods | 117 |
Strauss W.A. — Partial Differential Equations: An Introduction | 84, 103, 121 |
Wise G.L., Hall E.B. — Counterexamples in Probability and Real Analysis | 117 |
Connell E.H. — Elements of abstract and linear algebra | 100 |
Gohberg I., Goldberg S. — Basic Operator Theory | 30 |
Powers D.L. — Boundary Value Problems: And Partial Differential Equations | 62—63, 124 |
Chui C.K., Chan A.K., Liu C.S. — Wavelet Toolware: Software for Wavelet Training | 1 |
Schenk C.A., Schueller G.I. — Uncertainty Assessment of Large Finite Element Systems | 4, 85 |
Yandell B. — The Honors Class: Hilbert's Problems and Their Solvers | 28, 30, 50, 75, 336, 338, 351 |
Szkelyhidi L. — Discrete Spectral Synthesis and Its Applications | 76 |
Sokolnikoff I.S. — Mathematical Theory of Elasticity | 150 |
Dawson Jh.W. — Logical Dilemmas: The Life and Work of Kurt Godel | 12—43 |
Thaller B. — Visual quantum mechanics | 18, 25, 56 |
Billinge S.J.L., Thorpe M.F. — Local structure from diffraction | 191 |
Aitchison I.J.R., Hey A.J.G. — Gauge theories in particle physics. Volume 1: from relativistic quantum mechanics to QED | 354—356 |
Shankar R. — Basic Training In Mathematics | 281 |
Jackson D. — Fourier Series and Orthogonal Polynomials | 1—44, 91—101, 103—105, 111—112, 115—117, 209—211 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 456—459, 513—514, 674—678, 966—972, 1040, 1046—1047, 1119; see also Trigonometric series |
Rockmore D. — Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers | 83—84 |
Agoshkov V.I., Dubovsky P.B. — Methods for Solving Mathematical Physics Problems | 10 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 190 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 190 |
Borwein J., Bailey D., Girgensohn R. — Experimentation in Mathematics: Computational Paths to Discovery | 72, 72—77 |
Finch S.R. — Mathematical constants | 248, 251, 255 |
Wyld H.W. — Mathematical Methods for Physics | 58—59, 212 |
Atkinson K.E., Han W. — Theoretical Numerical Analysis: A Functional Analysis Framework | 144, 162 |
Khuri A.I. — Advanced calculus with applications in statistics | 471 |
Jones J.A., Jones J.M. — Elementary Number Theory | 175 |
Peiponen K.-E., Vartiainen E.M., Asakura T. — Dispersion, complex analysis and optical spectroscopy. Classical theory | 67, 77 |
Johnston R. — Numerical methods, a software approach | 129, 139 |
Bamberg P.G. — A Course in Mathematics for Students of Physics, Vol. 2 | 743 |
Jones R.M. — Mechanics of composite materials | 289, 291—292, 296, 328 |
Spivak M. — Calculus | 300, 303 |
Delves L.M. (ed.), Walsh J. (ed.) — Numerical Solution of Integral Equations | 18, 20, 21, 43, 84, 116, 287, 292 |
Fripp A., Fripp J., Fripp M. — Just-in-Time Math for Engineers | 146 |
Walecka J.D. — Fundamentals of statistical mechanics | 265—266 |
Kaczor W.J. — Problems in Mathematical Analysis III: Integration | 82 |
Eubank R.L. — Nonparametric regression and spline smoothing | 77, 79 |
Polya G. — Problems and Theorems in Analysis: Theory of Functions. Zeros. Polynomials. Determinants. Number Theory. Geometry | 75, VI 30 76, VI 32 76, VI 36 76, VI 29, 32, 33, 257, IX 5 367—368 |
Lang S.A. — Undergraduate Analysis | 296, 303 |
Gardiner A. — Infinite Processes: Background to Analysis | 11, 263, 272—274, 275n |
Kurth R. — Dimensional analysis and group theory in astrophysics | 58 |
Altmann S.L. — Band Theory of Solids: An Introduction from the Point of View of Symmetry | 78, 81 (4—9.17) |
Planck M. — Introduction to Theoretical Physics | 120—128 |
Griffits D.J. — Introduction to quantum mechanics | 28 |
Planck M. — Mechanics of Deformable Bodies: Being Volume II of "Introduction to Theoretical Physics" | 99, 109, 116 |
Boas R.P. — A Primer of Real Functions | 221, 225, 231 |
Bowman K.O., Shenton L.R. — Continued Fractions in Statistical Applications | 2 |
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 338 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 456—459, 513—514, 674—678, 966—972, 1040, 1046—1047, 1119, see also Trigonometric series |
Lin C.C., Segel L.A. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 77, 131—139 |
Ito K. — Encyclopedic Dictionary of Mathematics | 159, App. A, Table 11.I |
Menzel D.H. — Mathematical Physics | 193, 198 |
Fundamentals of engineering. Supplied-reference handbook | 19, 135 |
Milovanovic G.V., Mitrinovic D.S., Rassias T.M. — Topics in Polynomials: Extremal Problems, Inequalities, Zeros | 138 |
Taylor J.C. — An Introduction to Measure and Probability | 154 |
Takezawa K. — Introduction to Nonparametric Regression | 6, 16 |
Hale J.K., Kocak H. — Dynamics and Bifurcations | 123 |
Sokolnikoff I.S. — Higher Mathematics for Engineers and Physicists | 63—82 |
Bredensteiner E.J. — Differential Equations | 120—121 |
Konopinski E.J. — Electromagnetic fields and relativistic particles | 67—68 |
Jahne B. — Digital Image Processing | 45, 503 |
Zajac A. — Optics | 302—308 |
Davey W.P. — A study of crystal structure and its applications | 315, 493 |
Rudin W. — Real and complex analysis | 83, 91 |
Lay D.C. — Linear Algebra And Its Applications | 399 |
Zauderer E. — Partial Differential Equations of Applied Mathematics | 180, 186, 308, 347 |
Kress R., Gehring F.W. — Numerical Analysis | 52 |
Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 175, 196 |
Kuczma M., Choczewski B., Ger R. — Iterative Functional Equations | 415—419 |
Page Ch.H. — The Algebra of Electronics | 221 |
Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | 169, 191 |
Cleland A.N. — Foundations of nanomechanics | 50 |
Greenberg M.D. — Advanced engineering mathematics | 851, 864 |
Kythe P.K. — Fundamental Solutions for Differential Operators and Applications | 7, 90, 281 |
Berndt B.C., Evans R.J., Williams K.S. — Gauss and Jacobi Sums | 98, 365 |
Born M. — Atomic Physics | 285 |
Karman T., Biot A.M. — Mathematical Methods in Engineering | 325—335 |
Bachman G., Beckenstein E. — Fourier And Wavelet Analysis | 144 |
Sheil-Small T. — Complex polynomials | 129 |
Patterson S.J. — An introduction to the theory of the Riemann zeta-function | 115, 116 |
Phillips G.M. — Interpolation and Approximation by Polynomials | 57, 137 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 456—459, 513—514, 674—678, 966—972, 1040, 1046—1047, 1119 (see also Trigonometric series) |
Ayoub R. — An Introduction to the Analytic Theory of Numbers | 346 |
Helemskii A.Ya. — Lectures and Exercises on Functional Analysis, Vol. 233 | 73 |
Zeldovich Ya.B., Yaglom I.M. — Higher Math for Beginners | 386, 495, 498 |
Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 95 |
Weir A.J. — Lebesgue Integration and Measure | 188, 194—199, 202—219 |
Brillouin L. — Wave Propagation in Periodic Structures | 2, 3, 35, 143, 184, 185, 191 |
von zur Gathen J., Gerhard J. — Modern computer algebra | 337, 704 |
Chabert J.-L., Weeks C., Barbin E. — A History of Algorithms: From the Pebble to the Microchip | 164, 406, 425, 427 |
Kubo R., Toda M., Hashitsume N. — Statistical physics II. Nonequilibrium statistical mechanics | 15, 231 |
Kammler D.W. — First Course in Fourier Analysis | 5, 173 |
Strichartz R.S. — The way of analysis | xiii, 112, 255, 267, 270, 276, 515, 624, 625, 670, 676 |
Young M. — Optics and Lasers: Including Fibers and Optical Waveguides | 7.2.1, 7.2.2 |
Kolmogorov A.N., Fomin S.V. — Introductory real analysis | 149, 165 |
Sanders J.A., Verhulst F. — Averaging methods in nonlinear dynamical systems | 105, 184 |
Tung W.K. — Group Theory in Physics: An Introduction to Symmetry Principles, Group Representations, and Special Functions | 8 |
Montenbruck O., Pfleger Th. — Astronomy on the Personal Computer | 108 |
Nahin P.J. — The Science of Radio | 73—93, 97—98, 154 |
Bao G., Cowsar L., Masters W. — Mathematical Modeling in Optical Science | 111, 114 |
Strang G. — Linear Algebra and Its Applications | 168, 176 |
Bingham N.H., Goldie C.M., Teugels J.L. — Regular variation | see “Conditionally convergent series” |
Billingham J., King A.C. — Wave Motion | 2, 23, 34 |
Burnell J., Berry R. — Handbook of Astronomical Image Processing | 456 |
Goswami J.C., Chan A.K. — Fundamentals of Wavelets : Theory, Algorithms, and Applications | 31 |
MacRobert T.M. — Spherical Harmonics an Elementary Treatise on Harmonic Functions with Applications | 1 |
Rockmore D. — Stalking the Riemann Hypothesis | 83—84 |
Oden J.T. — Finite Elements: An Introduction (Vol. 1) | 10 |
Mattheij R.M.M., Molenaar J. — Ordinary Differential Equations in Theory and Practice (Classics in Applied Mathematics) (No. 43) | 91 |
Lee T.D. — Practicle physics and introduction to field theory | 14 |
Planck M. — Theory of heat: Being volume V of "Introduction to theoretical physics" | 164 |
Berger M., Cole M. (translator) — Geometry I (Universitext) | 12.11.9.4, 12.12.12 |
Hu S.-T. — Elements of real analysis | 265, 268 |
Jackson J.D. — Classical electrodynamics | 46 |
McComb W. D. — The Physics of Fluid Turbulence | 536 |
Feller W. — Introduction to probability theory and its applications (Volume II) | 626—629, 641 |
Kenzel W., Reents G., Clajus M. — Physics by Computer | 8, 54 |
Pope S.B. — Turbulent Flows | 684 |
Billingsley P. — Probability and Measure | 361, 26.26, 27.21 |
Janich K. — Topology | 3 |
Grimmett G., Stirzaker D. — Probability and Random Processes | 363 |
Hanna J.R., Rowland J.H. — Fourier Series, Transforms, and Boundary Value Problems | 72—74 |
Miller W. — Symmetry Groups and Their Applications | 215 |
Park D. — Introduction to the quantum theory | 618 |
Asmar N.H. — Partial Differential Equations with fourier series and boundary value problems | 17, 26-28, 281 |
Corduneanu C., Gheorghiu N., Barbu V. — Almost Periodic Function | 2, 23, 160, 167, 196, 202 |
Hamming R.W. — Numerical methods for scientists and engineers | 13, 445, 503 |
D'Angelo J.P., West D.B. — Mathematical Thinking: Problem-Solving and Proofs | 324, 364 |
Patil G.P. (ed.), Rao C.R. — Environmental Statistics | 319, 321 |
Animalu A.O. — Intermediate Quantum Theory of Crystalline Solids | 120 |
Stratton J.A. — Electromagnetic Theory | 285—287 |
Kincaid D., Cheney W. — Numerical analysis: mathematics of scientific computing | 410 |
Spiegel M.R. — Schaum's mathematical handbook of formulas and tables | 131—135 |
Chan Man Fong C.F., De Kee D., Kaloni P.N. — Advanced Mathematics for Engineering and Sciences | 153 |
Shirer H.N. — Nonlinear Hydrodynamic Modeling: A Mathematical Introduction | 47, 457, 458 |
Mclachlan D. — X-ray crystal structure | 151, 196, 277 |
Bayfield J.E. — Quantum Evolution: An Introduction to Time-Dependent Quantum Mechanics | 105, 140, 327 |
Evans G.A., Blackledge J.M., Yardley P. — Analytic Methods for Partial Differential Equations | 14, 53, 68 |
Lynch D.R. — Numerical Partial Differential Equations for Environmental Scientists and Engineers: A First Practical Course | 321 |
Meyer Y. — Wavelets and Operators | 112 |
Vanderlugt A. — Optical signal processing | 95, 96 |
Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis | 137, 212 |
Olver P.J., Shakiban C. — Applied linear. algebra | 93 |
Krantz S.G. — Handbook of Real Variables | 134 |
Greiner W. — Classical electrodynamics | 73 |
Clemens C.H. — Scrapbook of Complex Curve Theory | 89, 136, 166 |
Kaiser D. — A Friendly Guide to Wavelets | 26 |
Kreyszig E. — Advanced engineering mathematics | 211, 480, 487 |
Alexits G., Sneddon I.N. — Convergence Problems of Orthogonal Series | 6 |
Carslaw H.S. — Conduction of Heat in Solids | 94 |
Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 141 |
Holmes P., Lumley J.L., Berkooz G. — Turbulence, Coherent Structures, Dynamical Systems and Symmetry | 87, 228 |
Davies B. — Integral Transforms and Their Applications | 229, 252, 258, 343 |
Mattheij R.M.M. — Partial differential equations: modeling, analysis, computation | 34, 35 |
Rebonato R. — Interest-rate option models : understanding, analysing and using models for exotic interest-rate options | 65-6, 70 |
Patterson S.J. — An Introduction to the Theory of the Riemann Zeta-Function | 115, 116 |
West B.J., Bologna M., Grigolini P. — Physics of Fractal Operators | 119—124 |
Zeidler E. — Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems | 787 |
van der Giesen E. (Editor), Wu T.Y. (Editor) — Solid Mechanics, Volume 36 | 148 |
Houston W.V. — Principles of Mathematical Physics | 132, 135 |
Conway J.B. — A Course in Functional Analysis | 22 |
Prigogine I. — From being to becoming: time and complexity in the physical sciences. | 40 |
Montenbruck O. — Practical Ephemeris Calculations | 52 |
Emanuel Parzen — Stochastic processes (Classics in Applied Mathematics) | 108 |
Cotterill R.M.J. — Biophysics: An Introduction | 86 |
Buhmann M.D. — Radial Basis Functions : Theory and Implementations | 24 |
Prigogine I. — Proceedings of the International Symposium on Transport. Processes in Statistical Mechanics, held in Brussels,. August 27-31, 1956 | 142—143 |
Grosche C., Steiner F. — Handbook of Feynman path integrals | 39, 165 |
Auletta G. — Foundations and Interpretation of Quantum Mechanics | 36 |
Saxe K. — Beginning functional analysis | 82 |
Slater J.C., Frank N.H. — Mechanics | 21, 144, 150, 279—284 |
Kitahara M. — Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics and Thin Plates | 57, 59, 68, 75, 82—83 |
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 230 |
Beutler G. — Methods of Celestial Mechanics: Volume I: Physical, Mathematical, and Numerical Principles | II 396 |
Haller G. — Chaos Near Resonance | 390 |
Thompson W.J. — Computing for Scientists and Engineers: A Workbook of Analysis, Numerics, and Applications | 334-349 |
Ralph P. Boas Jr, Alexanderson G.L., Mugler D.H. — Lion Hunting and Other Mathematical Pursuits | 84, 99—100, 164, 234, 292—295 |
Phillips P. — Advanced Solid State Physics | 220 |
Arya A.P. — Introduction to Classical Mechanics | 110, 112, 620 |
Martin J Buerger — Crystal Structure Analysis | 352, 358, 363 |
Kaiser G. — Friendly Guide to Wavelets | 26 |
Fuchs D., Tabachnikov S. — Mathematical omnibus: Thirty lectures on classical mathematics | 147 |
Spiegel M.R. — Schaum's outline of theory and problems of probability and statistics | 81, 98 |
Drmota M., Tichy R.F. — Sequences, Discrepancies and Applications | 57, 256, 370 |
Kotz S. — Breakthroughs in Statistics (volume 3) | 201, 212 |
Carl D. Meyer — Matrix Analysis and Applied Linear Algebra Book and Solutions Manual | 299, 300 |
Christensen O., Christensen K.L. — Approximation Theory: From Taylor Polynomials to Wavelets | 52 |
Mickens R.E. — Mathematical Methods for the Natural and Engineering Sciences | 28—33 |
Rektorys K. — Survey of applicable mathematics | 702-20 |
Bridges D.S. — Foundations Of Real And Abstract Analysis | 215, 288 |
Herriot J.G. — Methods of mathematical analysis and computation | 155—172 |
Sokolnikoff I.S. — Mathematical Theory of Elasticity | 150 |
Grenander U. — Toeplitz Forms and Their Applications | 12 |
Adomian G. — Stochastic Systems | 4, 75, 221 |
Thuillard M. — Wavelets in Soft Computing | 6 |
Browder A. — Mathematical Analysis: An Introduction | 164 |
Rutherford D.E. — Vector methods. Applied to differential geometry, mechanics, and potential theory | 117 |
Ohanian H.C. — Classical Electrodynamics | 81 |
Sutton O.G. — Mathematics in action | 99 |
Pedrotti L.M. — Introduction to Optics | 174, 248—50, 527 |
Reeves C.R., Rowe J.E. — Genetic Algorithms: Principles and Perspectives. A Guide to GA Theory | 174 |
Macrobert T.M. — Functions of a complex variable | 86 |
Milnor J., Husemoller D. — Symmetric Bilinear Forms | 129 |
Stavroulakis I.P., Tersian S.A. — Partial Differential Equations: An Introduction with Mathematica and Maple | 199 |
Goertzel G. — Some Mathematical Methods of Physics | 272—275 |
Marks R.J.II. — The Joy of Fourier | 2, 4, 9, 10, 14-18, 33, 50-53, 59, 71, 72, 74, 98, 101, 105, 144, 185, 212, 215, 218, 220-223, 308, 335, 345, 353-355, 363, 366, 368, 370, 379, 387, 388, 420, 440, 473, 485, 501, 512, 667-669, 744, 747-749 |
Smith P.A., Eilenberg S. — Pure and Applied Mathematics | 1 |
Jordan C. — Calculus of Finite Differences | 242, 426, 463 |
Sneddon I.N. — Mixed boundary value problems in potential theory | 152—165 |
Kreyszig E. — Introductory functional analysis with applications | 160, 251 |
Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 372 |
Riley, Hobson — Mathematical Methods for Physics and Engineering | 421—438 |
Courant R., Hilbert D. — Methods of Mathematical Physics. Volume 1 | 69—77 |
Lovitt W.V. — Linear integral equations | 212, 245 |
Peebbles P.Z. — Radar Principles | 683 |
Rice J.R. — Linear Theory. Volume 1. The approximation of functions | 124, 145 |
Gloub G.H., Ortega J.M. — Scientific Computing and Differential Equations | 251 |
Stratton J.A. — Electromagnetic Theory | 285—287 |
Weaver H.J. — Applications of discrete and continous Fourier analysis | 33 |
Papoulis A. — The Fourier Integral and Its Applications | 42—47 |
Beard D.B. — Quantum Mechanics | 17—19 |
Goswami J., Chan A. — Fundamentals of Wavelets. Theory, Algorithms, and Applications | 31 |
Natanson I.P. — Theory of Functions of a Real Variable. Volume II | 21, 29 |
John Strikwerda — Finite difference schemes and partial differential equations | 38 |
Myler H.R., Weeks A.R. — Computer imaging recipes in C | 142 |
Hille E. — Methods in classical and functional analysis | 69, 149-158 |
Hamming R.W. — Numerical Methods For Scientists And Engineers | 278 |
Dym H., McKean H.P. — Fourier Series and Integrals | 30—46, 81—85, 206—209 |
Lindsay R.B. — Mechanical Radiation | 70, 96, 281 |
Lukacs E. — Characterisic functions | 74 |
Hildebrand F.B. — Methods of Applied Mathematics | 92 |
Hartman S., Mikusinski J. — The theory of Lebesgue measure and integration | 122 |
Vladimirov V. S. — Equations of mathematical physics | 16 |
Demidovich B. (ed.) — Problems in mathematical analysis | 318, 319 |
Courant R., John F. — Introduction to Calculus and Analysis. Volume 1 | 571, 587 |
Belotserkovsky S.M., Lifanov I.K. — Method of Discrete Vortices | 214,344,391,397 |
Meijer P.H.E. — Group Theory: The Application to Quantum Mechanics | 24 |
Gelbaum B.R. — Problems in Real and Complex Analysis | 5.1. 54, s 10.2. 401 |
Bouman J. (ed.) — Selected Topics in X-Ray Crystallography | 9 |
Fox H., Bolton W. — Mathematics for Engineers and Technologists | 248 |
Douglas R.G. — Banach algebra techniques in operator theory | 55 |
Loomis L.H. — An introduction to abstract harmonic analysis | 153, ($\S$38) |
Churchill R.V. — Operational mathematics | 206, 289, 294 |
McQuarrie D.A. — Statistical Mechanics | 557, 587 |
Planck M. — Theory of light: Being volume IV of Introduction to theoretical physics | 35, 37, 80 |
Kolmogorov A.N., Fomin S.V. — Measure, Lebesgue Integrals, and Hilbert Space | 111 |
Henley E.M., Thirring W. — Elementary Quantum Field Theory | 7, 29 |
Lang S. — Undergraduate analysis | 296, 303 |
Lighthill M. J. — Introduction to Fourier analysis and generalized functions | 1, 3—7, 58—75 |
Rao M.M., Ren Z.D. — Applications of Orlicz spaces | 184 |
Bhatia R. — Fourier Series (Mathematical Association of America Textbooks) | 19, 28, 31 |
Szabo R.J. — An Introduction to String Theory and D-Brane Dynamics | 89 |
Kuttler K.L. — Modern Analysis | 46 |
McKeague C. P. — Trigonometry | 234 |
Steiglitz K. — A Digital Signal Processing Primer: With Applications to Digital Audio and Computer Music | 31, 38—39, 57, 128—139 |
Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 245, 291 |
Richards P.I. — Manual of Mathematical Physics | 285, 409 |
Kestelman H. — Modern theories of integration | 229 |
Rektorys K. (ed.) — Survey of Applicable Mathematics | 702—720 |
Walters P. — An introduction to ergodic theory | 13 |
Mathews J., Walker R.L. — Mathematical methods of physics | 96 |
Ash R. — Basic probability theory | 167 |
Hugh D. Young, Roger A. Freedman — University physics with modern physics | 1367 |
Loomis L.H., Sternberg S. — Advanced calculus | 254, 301ff |
Kept R. — Fundamentals of the Average Case Analysis of Particular Algorithms | 9, 196, 198, 200, 202 |
Bennett C., Sharpley R.C. — Interpolation of Operators | 156, 179, 285 |
Lane S.M. — Mathematics, form and function | 181, 359, 450 |
Slater J.C., Frank N.H. — Electromagnetism | 30—31, 164—165, 217—220 |
Beard D.B. — Quantum Mechanics | 17—19 |
Matt Young — Optics and Lasers: Including Fibers and Optical Waveguides | 7.2.1, 7.2.2 |
Hinrichsen D., Pritchard A. — Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness | 171, 745—746 |
Hobbie R., Roth B. — Intermediate Physics for Medicine and Biology, | 290 |
Cloud M.J., Drachman B.C. — Inequalities: with applications to engineering | 65, 69, 85 |
Howes N.R — Modern Analysis and Topology | 353 |
Barry Steven, Davis Stephen — Essential Mathematical Skills: For Students of Engineering, Science and Applied Mathematics | 119 |
Bear H.S. — A Primer of Lebesgue Integration | 157 |
Kechris A.S., Louveau A. — Descriptive Set Theory and the Structure of Sets of Uniqueness | 23 |
Kanwal R.P. — Linear Integral Equations: Theory and Techniques | see "Fourier expansion" |
Braun M. — Differential Equations and Their Applications: An Introduction to Applied Mathematics | 485, 486 |
Schwarzenbach D. — Crystallography | 149 |
Hildebrand F.B. — Advanced Calculus for Applications | 216, 221 |
Griffits D.J. — Introductions to electrodynamics | 130 |
De Bruijn N.G. — Asymptotic methods in analysis | 52 |
Strang G. — Introduction to Applied Mathematics | 265, 273 |
Langtangen H. — A Primer on Scientific Programming with Python | 47 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 23, 518 |
Vilenkin N.Ja., Klimyk A.U. — Representation of Lie Groups and Special Functions: Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms | 99, 113 |
Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 245 |
Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 195, 203, 241, 247 |
Jeffreys H. — Methods Of Mathematical Physics | 368, 430 |
Wrede R.C., Spiegel M. — Theory and problems of advanced calculus | 336—362 |
Kruegel E. — The Physics of Interstellar Dust | 187, 207, 212 |
Miller W. — Symmetry and Separation of Variables | 27 |
Schiff L.I. — Quantum Mechanics | 59 |
Saha M.N., Srivastava B.N. — A treatise on heat: Including kinetic theory of gasses, thermodynamics and recent advances in statistical thermodynamics | 588 |
Cohen G.L. — A Course in Modern Analysis and Its Applications | 58, 298, 299 |
Greiner W. — Classical mechanics. Systems of particles and hamiltonian dynamics | 125 |
Pier J.-P. — Mathematical Analysis during the 20th Century | 129 |
Rektorys K. — Survey of Applicable Mathematics.Volume 2. | I 673, I 678 |
Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 299—303 |
Gullberg J. — Mathematics: from the birth of numbers | 910 |
Borovskikh Y.V. — Random permanents | 104 |
Gohberg I., Goldberg S., Kaashoek M. — Classes of linear operators. (volume 2) | 563 |
Lee A. — Mathematics Applied to Continuum Mechanics | 352—353 |
Rice F.O., Teller E. — The structure of matter | 212 |
Haus H.A. — Waves and Fields in Optoelectronics | 19 |
D.E. Newland — An Introduction to Random Vibration, Spectral and Wavelet Analysis | 33 |
Hopf L., Nef W. — Introduction To The Differential Equations Of Physics | 88 |
Johnson W.C. — Mathematical and physical principles of engineering analysis | 239—275 |
Dolan T.J. — Fusion Research: Principles, Experiments and Technology | 192 |
Courant R. — Differential and Integral Calculus, Vol. 1 | 437—456 |
Lyons L. — All You Wanted to Know about Mathematics but Were Afraid to Ask - Mathematics for Science Students. Volume 1 | 112 |
Dym H., McKean H. — Fourier Series and Integrals (Probability & Mathematical Statistics Monograph) | 30—46, 81—85, 206—209, |
Slater J., Frank N. — Introduction to Theoretical Physics | 120—128 |
Stillwell J. — Mathematics and its history | 176, 179, 217, 314, 316, 317 |
Burden R.L., Faires J.D. — Numerical analysis | 455 |
Woods F.S. — Advanced Calculus | 295 |
Eves H.W. — Mathematical circles revisited | 146 |
Mattheij R.M. — Partial differential equations | 34, 35 |
Davis P., Hersh R. — The Mathematical Experience | 256 |
Dickson L.E. — History of the theory of numbers. Volume 3: quadratic and higher forms | 98, 137 |
Groesen E., Molenaar J. — Continuum Modeling in the Physical Sciences (Monographs on Mathematical Modeling and Computation) | 91, 157 |
Planck M. — Theory of light | 35, 37, 80 |
Kanwal R.P. — Generalized functions: Theory and technique | 65—67, 73, 108 ff |
Lord E., Wilson C. — The Mathematical Description of Shape and Form (Mathematics and Its Applications) | 230 |
Friedman A., Littman W. — Industrial Mathematics: A Course in Solving Real-World Problems | 54, 55, 58, 59, 61, 64 |
Davies P. — The New Physics | 77, 92 |
Shirley P., Ashikhmin M, Gleicher M. — Fundamentals of computer graphics | 105 |
Sommerfeld A. — Partial Differential Equations in Physics | 1 |
Zorich V.A., Cooke R. — Mathematical analysis II | 499—526 |
Cheney W. — Analysis for Applied Mathematics | 42, 167 |
Zorich V. — Mathematical Analysis | 499—526 |
Young D.M., Gregory R.T. — A Survey of Numerical Mathematics, Volume 2 | 330—332, 952 |
Falconer K. — Fractal geometry: mathematical foundations and applications | 206 |
Park D. — Introduction to the Quantum Theory (Pure & Applied Physics) | 618 |
Radunovic D.P. — Wavelets: From Math to Practice | 10, 20 |
Moeller K. — Optics: Learning by Computing, with Examples Using Maple, MathCad®, Matlab®, Mathematica®, and Maple® (Undergraduate Texts in Contemporary Physics) | 378 |
Mathews J., Walker R.L. — Mathematical Methods of Physics | 96 |
Mac Lane S. — Mathematics: Form and Function | 181, 359, 450 |
Jackson J.D. — Classical electrodynamics | 68 |
D'Angelo J.P., West D.B. — Mathematical thinking: problem-solving and proofs | 324, 364 |
Davies B. — Integral Transforms and their Applications | 229, 252, 258, 343 |
Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 77, 131—139 |
Apostol T. — Mathematical Analysis, Second Edition | 309 |
Logan J. — Applied Mathematics: A Contemporary Approach | 180, 185 |
Lin C., Segel L. — Mathematics applied to deterministic problems in the natural sciences | 77, 131—139 |
Kline M. — Mathematical thought from ancient to modern times | 456, 459, 513, 514, 674—678, 966—972, 1040, 1046, 1047, 1119, see also "Trigonometric series" |
Chui C.K. — Wavelets: a mathematical tool for signal processing | 45, 68 |
Dennery P., Krzywicki A. — Mathematics for Physicists | 216—223 |
Daniels R.W. — Introduction to numerical methods and optimization techniques | 91—97, 99 |
Vretblad A. — Fourier Analysis and Its Applications (Graduate Texts in Mathematics) | 75, 220 |
Eves H. — Mathematical Circles Revisited: A Second Collection of Mathematical Stories and Anecdotes | 146 |
Eves H. — Mathematical Circles Adieu | 200 |
Georgescu A. — Asymptotic Treatment of Differential Equations (Applied Mathematics) | 164 |
D'Angelo J.P. — Inequalities from Complex Analysis (Carus Mathematical Monographs) | 89, 124, 125 |
Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | xxi, xxii, xxvii, xxxi, 10, 32, 59, 67, 69, 80, 145, 163, 206 |