Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Connell E.H. — Elements of abstract and linear algebra
Connell E.H. — Elements of abstract and linear algebra

Читать книгу
бесплатно

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Elements of abstract and linear algebra

Автор: Connell E.H.

Язык: en

Рубрика: Математика/Алгебра/Линейная алгебра/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1999

Количество страниц: 146

Добавлена в каталог: 19.03.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Abelian group      20 71
Algebraically closed field      46 97
Alternating group      32
Ascending chain condition      112
Associate elements in a domain      47 109
Automorphism of groups      29
Automorphism of modules      70
Automorphism of rings      43
Axiom of Choice      10
Basis or free basis of a module      78 83
Basis or free basis, canonical or standard for $\mathbb{R}^n$      72 79
Bijective or one-to-one correspondence      7
Binary operation      19
Boolean algebras      52
Boolean rings      51
Cancellation law in a group      20
Cancellation law in a ring      39
Cartesian product      2 11
Cayley — Hamilton theorem      66 98 125
Cayley’s Theorem      31
Center of group      22
Change of basis      83
Characteristic of a ring      50
Characteristic polynomial of a homomorphism      85 95
Characteristic polynomial of a matrix      66
Chinese remainder theorem      50 108
Classical adjoint of a matrix      63
Cofactor of a matrix      62
Comaximal ideals      108 120
Commutative ring      37
complex numbers      1 40 46 47 97 104
conjugate      64
Conjugation by a unit      44
Contravariant functor      131
Coproduct or sum of modules      76
Coset      24 42 74
CYCLE      32
Cyclic group      23
Cyclic module      107
Determinant of a homomorphism      85
Determinant of a matrix      60 128
Diagonal matrix      56
Dimension of a free module      83
Division algorithm      45
Domain, Euclidean      116
Domain, integral domain      39
Domain, of a function      5
Domain, principal ideal      46
Domain, unique factorization      111
Dual basis      132
Dual spaces      130
Eigenvalues      95
Eigenvectors      95
Elementary divisors      119 120
Elementary matrices      58
Elementary operations      57 122
Endomorphism of a module      70
Equivalence class      4
Equivalence relation      4
Euclidean algorithm      14
Euclidean Domain      116
Evaluation map      47 49
Even permutation      32
Exponential of a matrix      106
Factorization domain (FD)      111
Fermat’s Little Theorem      50
Field      39
Formal power series      113
Fourier series      100
Free basis      72 78 79 83
Free R-module      78
Function or map      6
Function or map, bijective      7
Function or map, injective      7
Function or map, surjective      7
Function space $Y^T$ as a group      22 36
Function space $Y^T$ as a module      69
Function space $Y^T$ as a ring      44
Function space $Y^T$ as a set      12
Fundamental theorem of algebra      46
Gauss      113
General linear group $Gl_n(R)$      55
Generating sequence in a module      78
Generators of $\mathbb{Z}_n$      40
Geometry of determinant      90
Gram — Schmidt orthonormalization      100
Graph of a function      6
Greatest common divisor      15
Group      19
Group, abelian      20
Group, additive      20
Group, cyclic      23
Group, multiplicative      19
Group, symmetric      31
Hausdorff maximality principle      3 87 109
hilbert      113
Homogeneous equation      60
Homomorphism of quotient, group      29
Homomorphism of quotient, module      74
Homomorphism of quotient, ring      44
Homormophism of groups      23
Homormophism of modules      69
Homormophism of rings      42
Ideal, left      41
Ideal, maximal      109
Ideal, of a ring      41
Ideal, prime      109
Ideal, principal      42 46
Ideal, right      41
Idempotent element in a ring      49 51
Image of a function      7
Independent sequence in a module      78
Index of a subgroup      25
Index set      2
Induction      13
Injective or one-to-one      7 79
Inner product spaces      98
Integers      1 14
Integers mod n      27 40
Invariant factors      119
Inverse image      7
Invertible or non-singular matrix      55
Irreducible element      47 110
Isometries of a square      26 34
Isometry      101
Isomorphism of groups      29
Isomorphism of modules      70
Isomorphism of rings      43
Jacobian matrix      91
Jordan block      96 123
Jordan canonical form      96 123 125
Kernel      28 43 70
Least common multiple      17 18
linear combination      78
Linear ordering      3
Linear transformation      85
Matrix, elementary      58
Matrix, invertible      55
Matrix, representing a linear transformation      84
Matrix, triangular      56
Maximal ideal      109
Maximal independent sequence      86 87
Maximal monotonic subcollection      4
Maximal subgroup      114
Minimal polynomial      127
Minor of a matrix      62
Module over a ring      68
Monomial      48
Monotonic collection of sets      4
Multilinear forms      129
Multiplicative group of a finite field      121
Nilpotent element      56
Nilpotent homomorphism      93
Noetherian ring      112
Normal subgroup      26
Odd permutation      32
Onto or surjective      7 79
Order of an element or group      23
Orthogonal group O(n)      102
Orthogonal vectors      99
Orthonormal sequence      99
Partial ordering      3
Partition of a set      5
Permutation      31
Pigeonhole Principle      8 39
Polynomial ring      45
Power set      12
Prime element      110
Prime ideal      109
Prime integer      16
Principal ideal      42
Principal ideal domain (PID)      46
Product of groups      34 35
Product of modules      75
Product of rings      49
Product of sets      2 11
Projection maps      11
Quotient group      27
Quotient module      74
Quotient ring      42
Range of a function      6
Rank of a matrix      59 89
Rational canonical form      107 125
Relation      3
Relatively prime, elements in a PID      119
Relatively prime, integers      16
Right and left inverses of functions      10
Ring      38
Root of a polynomial      46
Row echelon form      59
Scalar matrix      57
Scalar multiplication      21 38 54 71
Self adjoint      103 105
Short exact sequence      115
Sign of a permutation      60
Similar matrices      64
Solutions of equations      9 59 81
Splitting map      114
Standard basis for $\mathbb{R}^n$      72 79
Strips (horizontal and vertical)      8
Subgroup      14 21
Submodule      69
Subring      41
Summand of a module      77 115
Surjective or onto      7 79
Symmetric groups      31
Symmetric matrix      103
Torsion element of a module      121
Trace of a homormophism      85
Trace of a matrix      65
Transpose of a matrix      56 103 132
Transposition      32
Unique factorization domain (UFD)      111
Unique factorization of integers      16
Unique factorization, in principal ideal domains      113
Unit in a ring      38
Vector space      67 85
Volume preserving homomorphism      90
Zero divisor in a ring      39
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2019
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте