|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 |
|
|
Предметный указатель |
-suinmation 379.M
or (a sequence space) 168.B
, ultradistribution of class 125.U
-valued random variable 342.C
-point 396.C
-stability 303.G
(the totality of functions bounded and continuous on the closure of and holomorphic in ) 168.B
-stability 303.G
(the totality of functions that are holomorphic in and that satisfy 168.B
set 22.D
-conjugacy, -conjugate 126.B
-equivalence, -equivalent 126.B
-flow 126.B
-foliation 154.G
-function in a -manifold 105.G
-manifold 105.D
-manifold compact 105.D
-manifold paracompact - 105.D
-manifold with boundary 105.E
-manifold without boundary 105.E
-mapping 105.J
-norm 126.H
-structurally stable 126.H
-structure 108.D
-structure on a topological manifold 114.B
-structure subordinate to (for a -structure) 108.D
-triangulation 114.C
-stable 126.H
-function (of many variables) 58.B
-function (of many variables) germ of (at the origin) 58.C
-function (of many variables) preparation theorem for 58.C
-function (of many variables) rapidly decreasing 168.B
-function (of many variables) slowly increasing 125.O
-functions and quasi-analytic functions 58
-topology, weak 401.C
-homomorphism (between Lie groups) 249.N
-isomorphism (between Lie groups) 249.N
(the totality of functions in whose supports are compact subsets of ) 168.B
(the totality of l times continuously differentiable functions in ) 168.B
-bundle 237.F
-mapping 237.G
-field 118.F
-field 118.F
set 22.D
200.G
200.K
-metric 136.F
(finite field with q elements) 450.Q
set 270.C
-set 270.C
(Sobolev spaces) 168.B
(Sobolev spaces) 168.B
(Hardy spaces) 168.B
297.G
-algebra (of a locally compact Hausdorff group) 36.L
-space, abstract 310.G
(the space of measurable functions f(x) on such that , is integrable) 168.B
(the Lorentz spaces) 168.B
168.B
matrix 269.A
(the set of all essentially bounded measurable factions on ) 168.B
(projective symplectic group over K) 60.L
(projective space) 343.H
-figure 343.B
set 22.D
(totality of measurable functions on that take finite value almost everywhere) 168.B
-manifold 178.G
-factorial experiment 102.H
200.D
200.K
-statistic Hotelling’s 280.B
-statistic noncentral Hotelling 374.C
-space 425.Q
-space 425.Q
-uniform space 436.C
-uniformity 436.C
-space 425.Q
-topological group 423.B
-space 425.Q
-space 425.Q
-space 425.Q
-space 425.Q
-scale 19.D
(Sobolev space) 168.B
(distribution) 125.EE
-axis (of a Euclidean space) 140
-extension 14.L
-extension basic 14.L
-extension cyclotomic 14.L
-capacity 169.C
-excessive function 261.D
-limit point 126.D
-limit set (of an orbit) 126.D
-perfect, a-perfectness 186.J
-point (of a meromorphic function) 272.B
-pseudo-orbit 126.J
-quartile 396.C
-string 248.L
-trimmed mean 371.H
-cohomology groups 72.D
-complex 72.D
see “Beta”
-KMS state 402.G
-shadowed 126.J
-traced 126J
-equivalent (closed on G-manifolds) 431.F
131.E
-delta 168.B
-measure 270.D
-refinement (of a covering) 425.R
-set 22.D
see “gamma”
-equivalent (points) 122.A
-extension 14.L
-matrices, Dirac 415.G
-perfect 186.J
-perfectness 186.J
-point of the kth order (of a holomorphic function) 198.C
-structure 90.D 105.Y
-structure 154.H
-foliation 154.H
-structure 154.E
-characteristic class (of a real oriented vector bundle) 237.F
-function 32.C
(Lipschitz spaces) 168.B
131.B
131.D
(logarithm) 131.G
-complete (locally convex space) 424.X
(Besov spaces) 168.B
(complex numbers) 74.A 294.A
-measurable set 270.C
-regular measure 270.F
-summable series 379.0
-lattice (of a separable algebra) 27.A
-lattice (of a separable algebra)integral 27.A
-lattice (of a separable algebra)normal 27.A
-differential (on an algebraic curve) 9.F
-genus (of an algebraic curve) 9.F
-ideal integrated two-sided 27.A
-ideal two-sided 27.A
-linearly equivalent divisors (on an algebraic curve) 9.F
-specialty index (of a divisor of an algebraic curve) 9.F
-ideal, left 27.A
-ideal, right 27.A
adic exponential valuation 439.F
adic extension (of the field of quotients of a Dedekind domain) 439.F
index (of a central simple algebra over a finite algebraic number field) 29.G
invariant (of a central simple algebra over a finite algebraic number field) 29.G
primary ideal 67.F
| -function, Weierstrass 134.F App. Table
168.B
(the space of hyperfunctions) 125.V
-group 52.M
-theory, Serre 202.N
125.B 168.B
(the totality of functions f(x) in such that for all belongs to with respect to Lebesgue measure) 168.B
168.B
125.B
125.U
-function 46.C
-space 193.N
125.I
125.I 168.B
168.B
-module 383.I
(space of holomorphic functions in ) 168.B
168.B
-acyclic 200.Q
(the totality of rapidly decreasing -functions) 168.B
(the totality of tempered distributions) 125.N
-minimal function 367.E
-absolutely continuous (additive set function) 380.C
-completion 270.D
-conformal function 352.B
-constant stratum 418.E
-integrable 221.B
-measurable 270.D
-null set 370.D
-operator, bounded 356.B
-singular (additive set function) 380.C
-conjugate 126.H
-connected space 79.C
-connected space locally 79.C
-consistent (system) 156.E
-equivalent 126.H
-explosion 126.J
-group 190.E
-homomorphism (between -groups) 190.E
-isomorphism (between -groups) 190.E
-limit point 126.D
-limit set 126.D
-modules, duality theorem for 422.L
-stability theorem 126.J
-stable, - 126.H
-subgroup (of an -group) 190.E
-functor 200.I
-functor universal 200.I
-functor 200.I
-group 151.F
-length (of a group) 151.F
-manifold 114.I
-series(of a group) 151.F
-solvable group 151.F
-theorem 116
-topology 424.R
set 22.A
set 22.D
-set 308.I
-space 425.Y
-additive measure 270.D
-additivity 270.D
-algebra 270.B
-algebra optional 407.B
-algebra predictable 407.B
-algebra tail 342.G
-algebra topological 270.C
-algebra well-measurable 407.B
-compact space 425.V
-complete (vector lattice) 310.C
-complete lattice 243.D
-complete lattice conditionally 243.D
-discrete (covering of a set) 425.R
-field Bayer sufficient 396.J
-field boundedly complete 396.E
-field complete 396.E
-field D-sufficient 396.J
-field decision theoretically sufficient 396.J
-field minimal sufficient 396.F
-field pairwise sufficient 396.F
-field test sufficient 396.J
-finite (measure space) 270.D
-function, of Weierstrass 134.F App. Table
-locally finite covering (of a set) 425.R
-process (of a complex manifold) 72.H
-space 425.Y
-subfield necessary 396.E
-subfield sufficient 396.E
-weak topology 308.B
set 22.A
set 22.D
131.E
131.E
-function 150.D
(topology) 424.R
Eddington’s App. A Table
-covering 273.B
-entropy 213.E
-expansion 111.C
-factor 450.N
-flat 178.D
-Hermitian form 60.O
-independent partitions 136.E
-induction, axiom of 33
-neighborhood (of a point) 273.C
-number 312.C
-operator, Hilbert 411.J
-quantifier, Hilbert 411.J
-sphere (of a point) 273.C
-symbol, Hilbert 411.J
-tensor product 424.R
-theorem (in predicate logic) 411.J
-trace form 60.O
-subsequence 354.E
-consistency, -consistent 399.K
, ultradistribution of class 125.U
-summable series 379.O
(B,N)-pair 151.J
(DF)-space 424.P
(F)-space 424.I
(F, F’)-free (compact oriented G-manifold) 431.G
(H, p)-summable 379.M
(LF)-space 424.W
(M)-space (= Montel space) 424.O
(n + 2)-hyperspherical coordinates 79.A 90.B
(o)-convergent 87.L
(o)-star convergent 87.L
(p + 1)-stage method 303.D
(p, q)-ball knot 235.G
(p, q)-knot 235.G
(R,k)-summable 379.S
(R,S)-exact sequence (of modules) 200.K
(R,S)-injective module 200.K
(R,S)-projective module 200.K
(S)-space 424.S
* see also “Star”
*-automorphism group 36.K
*-derivation 36.K
*-homomorphism 36.F
*-representation (of a Banach *-algebra) 36.F
*-subalgebra 443.C
1-1(mapping) 381.C
1-complete manifold, weakly 21.L
2-isomorphic 186.H
3j-symbol 353.B
4-current density 150.B
4-momentum operators 258.A D
5-set 308.I
6j-symbol 353.B
9j symbol 353.C
|
|
|
Реклама |
|
|
|