Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   

Поиск по указателям

Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2

Обсудите книгу на научном форуме

Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter

Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.


This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.

Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
Предметный указатель
$(C, \alpha)$-suinmation      379.M
$(l_p)$ or $l_p$ (a sequence space)      168.B
$(M_p)$, ultradistribution of class      125.U
$(S, \mathfrak G)$-valued random variable      342.C
$100\alpha\%$-point      396.C
$A(\alpha)$-stability      303.G
$A(\Omega)$ (the totality of functions bounded and continuous on the closure of $\Omega$ and holomorphic in $\Omega$)      168.B
$A_0$-stability      303.G
$A_p(\Omega)$ (the totality of functions $\int$ that are holomorphic in $\Omega$ and that satisfy $\int_{\Omega}|f(z)|^p dx dy<\infty$      168.B
$B_n$ set      22.D
$C^r$-conjugacy, $C^r$-conjugate      126.B
$C^r$-equivalence, $C^r$-equivalent      126.B
$C^r$-flow      126.B
$C^r$-foliation      154.G
$C^r$-function in a $C^{\infty}$-manifold      105.G
$C^r$-manifold      105.D
$C^r$-manifold compact      105.D
$C^r$-manifold paracompact -      105.D
$C^r$-manifold with boundary      105.E
$C^r$-manifold without boundary      105.E
$C^r$-mapping      105.J
$C^r$-norm      126.H
$C^r$-structurally stable      126.H
$C^r$-structure      108.D
$C^r$-structure on a topological manifold      114.B
$C^r$-structure subordinate to (for a $C^s$-structure)      108.D
$C^r$-triangulation      114.C
$C^r-\Omega$-stable      126.H
$C^{\infty}$-function (of many variables)      58.B
$C^{\infty}$-function (of many variables) germ of (at the origin)      58.C
$C^{\infty}$-function (of many variables) preparation theorem for      58.C
$C^{\infty}$-function (of many variables) rapidly decreasing      168.B
$C^{\infty}$-function (of many variables) slowly increasing      125.O
$C^{\infty}$-functions and quasi-analytic functions      58
$C^{\infty}$-topology, weak      401.C
$C^{\omega}$-homomorphism (between Lie groups)      249.N
$C^{\omega}$-isomorphism (between Lie groups)      249.N
$C_0^l(\Omega)$ (the totality of functions in $C_0^l(\Omega)$ whose supports are compact subsets of $\Omega$)      168.B
$C_0^l(\Omega)$ (the totality of l times continuously differentiable functions in $\Omega$)      168.B
$c_1$-bundle      237.F
$c_1$-mapping      237.G
$C_i$-field      118.F
$C_i(d)$-field      118.F
$C_n$ set      22.D
$Ext^n_A(M, N)$      200.G
$Ext^n_R(A, B)$      200.K
$f_N$-metric      136.F
$F_q$ (finite field with q elements)      450.Q
$F_{\sigma}$ set      270.C
$G_{\sigma}$-set      270.C
$H^l(\Omega)$ (Sobolev spaces)      168.B
$H^l_0(\Omega)$ (Sobolev spaces)      168.B
$H_p$ (Hardy spaces)      168.B
$Ind_g a$      297.G
$L_1$-algebra (of a locally compact Hausdorff group)      36.L
$L_p$-space, abstract      310.G
$L_p(\Omega)$ (the space of measurable functions f(x) on $\Omega$ such that $|f(x)|^P, 1\legslant p \legslant \infty$, is integrable)      168.B
$L_{(p,q)}(\Omega)$ (the Lorentz spaces)      168.B
$L_{\infty}$      168.B
$m \times n$ matrix      269.A
$M(\Omega)$ (the set of all essentially bounded measurable factions on $\Omega$)      168.B
$PS_p(n, k)$ (projective symplectic group over K)      60.L
$P^n(K)$ (projective space)      343.H
$P^r$-figure      343.B
$P_n$ set      22.D
$S(\Omega)$ (totality of measurable functions on $\Omega$ that take finite value almost everywhere)      168.B
$SC^p$-manifold      178.G
$s^h$-factorial experiment      102.H
$Tor^A_n(M, N)$      200.D
$Tor^R_n(A, B)$      200.K
$T^2$-statistic Hotelling’s      280.B
$T^2$-statistic noncentral Hotelling      374.C
$T_0$-space      425.Q
$T_1$-space      425.Q
$T_1$-uniform space      436.C
$T_1$-uniformity      436.C
$T_2$-space      425.Q
$T_2$-topological group      423.B
$T_3$-space      425.Q
$T_4$-space      425.Q
$T_5$-space      425.Q
$T_6$-space      425.Q
$u_i$-scale      19.D
$W_p^l(\Omega)$ (Sobolev space)      168.B
$x^{\lambda}_+$ (distribution)      125.EE
$x_i$-axis (of a Euclidean space)      140
$Z_1$-extension      14.L
$Z_1$-extension basic      14.L
$Z_1$-extension cyclotomic      14.L
$\alpha$-capacity      169.C
$\alpha$-excessive function      261.D
$\alpha$-limit point      126.D
$\alpha$-limit set (of an orbit)      126.D
$\alpha$-perfect, a-perfectness      186.J
$\alpha$-point (of a meromorphic function)      272.B
$\alpha$-pseudo-orbit      126.J
$\alpha$-quartile      396.C
$\alpha$-string      248.L
$\alpha$-trimmed mean      371.H
$\bar\partial$-cohomology groups      72.D
$\bar\partial$-complex      72.D
$\beta$      see “Beta”
$\beta$-KMS state      402.G
$\beta$-shadowed      126.J
$\beta$-traced      126J
$\chi$-equivalent (closed on G-manifolds)      431.F
$\cos^{-1}$      131.E
$\delta$-delta      168.B
$\delta$-measure      270.D
$\Delta$-refinement (of a covering)      425.R
$\Delta^1_n$-set      22.D
$\gamma$      see “gamma”
$\Gamma$-equivalent (points)      122.A
$\Gamma$-extension      14.L
$\gamma$-matrices, Dirac      415.G
$\gamma$-perfect      186.J
$\gamma$-perfectness      186.J
$\gamma$-point of the kth order (of a holomorphic function)      198.C
$\Gamma$-structure      90.D 105.Y
$\Gamma^r_q$-structure      154.H
$\Gamma_{\mathscr S}$-foliation      154.H
$\Gamma_{\mathscr S}$-structure      154.E
$\hat\mathscr A$-characteristic class (of a real oriented vector bundle)      237.F
$\lambda$-function      32.C
$\Lambda^s$ (Lipschitz spaces)      168.B
$\log_a x$      131.B
$\log_x$      131.D
$\Log_z$ (logarithm)      131.G
$\mathbf B$-complete (locally convex space)      424.X
$\mathbf B^S_{p,q}$ (Besov spaces)      168.B
$\mathbf C$ (complex numbers)      74.A 294.A
$\mathfrak B$-measurable set      270.C
$\mathfrak B$-regular measure      270.F
$\mathfrak B$-summable series      379.0
$\mathfrak g$-lattice (of a separable algebra)      27.A
$\mathfrak g$-lattice (of a separable algebra)integral      27.A
$\mathfrak g$-lattice (of a separable algebra)normal      27.A
$\mathfrak O$-differential (on an algebraic curve)      9.F
$\mathfrak O$-genus (of an algebraic curve)      9.F
$\mathfrak o$-ideal integrated two-sided      27.A
$\mathfrak o$-ideal two-sided      27.A
$\mathfrak O$-linearly equivalent divisors (on an algebraic curve)      9.F
$\mathfrak O$-specialty index (of a divisor of an algebraic curve)      9.F
$\mathfrak o_i$-ideal, left      27.A
$\mathfrak o_r$-ideal, right      27.A
$\mathfrak p$ adic exponential valuation      439.F
$\mathfrak p$ adic extension (of the field of quotients of a Dedekind domain)      439.F
$\mathfrak p$ index (of a central simple algebra over a finite algebraic number field)      29.G
$\mathfrak p$ invariant (of a central simple algebra over a finite algebraic number field)      29.G
$\mathfrak p$ primary ideal      67.F
$\mathfrak P$-function, Weierstrass      134.F App. Table
$\mathscr B(\Omega)$ $(=\mathscr D_L(\Omega))$      168.B
$\mathscr B(\Omega)$ (the space of hyperfunctions)      125.V
$\mathscr C$-group      52.M
$\mathscr C$-theory, Serre      202.N
$\mathscr D(\Omega)$      125.B 168.B
$\mathscr D_{L_p}(\Omega)$ (the totality of functions f(x) in $C^{\infty}(\Omega)$ such that for all $\alpha, D^{\alpha}f(x)$ belongs to $L_p(\Omega)$ with respect to Lebesgue measure)      168.B
$\mathscr D_{\{M_p\}}\mathscr D_{(M_p)}$      168.B
$\mathscr D’(\Omega)$      125.B
$\mathscr D’_{\{M_p\}}\mathscr D’_{(M_p)}$      125.U
$\mathscr E$-function      46.C
$\mathscr E$-space      193.N
$\mathscr E(\Omega)$      125.I
$\mathscr E(\Omega)(=C^{\infty}(\Omega))$      125.I 168.B
$\mathscr E_{\{M_p\}}, \mathscr E_{(M_p)}$      168.B
$\mathscr O$-module      383.I
$\mathscr O(\Omega)$ (space of holomorphic functions in $\Omega$)      168.B
$\mathscr O_p(\Omega)$      168.B
$\mathscr P$ -acyclic      200.Q
$\mathscr S$ (the totality of rapidly decreasing $C^{\infty}$-functions)      168.B
$\mathscr S’$ (the totality of tempered distributions)      125.N
$\mathscr X$-minimal function      367.E
$\mu$-absolutely continuous (additive set function)      380.C
$\mu$-completion      270.D
$\mu$-conformal function      352.B
$\mu$-constant stratum      418.E
$\mu$-integrable      221.B
$\mu$-measurable      270.D
$\mu$-null set      370.D
$\mu$-operator, bounded      356.B
$\mu$-singular (additive set function)      380.C
$\Omega$-conjugate      126.H
$\omega$-connected space      79.C
$\omega$-connected space locally      79.C
$\omega$-consistent (system)      156.E
$\Omega$-equivalent      126.H
$\Omega$-explosion      126.J
$\Omega$-group      190.E
$\Omega$-homomorphism (between $\Omega$-groups)      190.E
$\Omega$-isomorphism (between $\Omega$-groups)      190.E
$\omega$-limit point      126.D
$\omega$-limit set      126.D
$\Omega$-modules, duality theorem for      422.L
$\Omega$-stability theorem      126.J
$\Omega$-stable, $C^r$-      126.H
$\Omega$-subgroup (of an $\Omega$-group)      190.E
$\partial$-functor      200.I
$\partial$-functor universal      200.I
$\partial^*$-functor      200.I
$\pi$-group      151.F
$\pi$-length (of a group)      151.F
$\pi$-manifold      114.I
$\pi$-series(of a group)      151.F
$\pi$-solvable group      151.F
$\pi$-theorem      116
$\pi$-topology      424.R
$\Pi_1^1$ set      22.A
$\Pi_n^1$ set      22.D
$\rho$-set      308.I
$\Sigma$ -space      425.Y
$\sigma$-additive measure      270.D
$\sigma$-additivity      270.D
$\sigma$-algebra      270.B
$\sigma$-algebra optional      407.B
$\sigma$-algebra predictable      407.B
$\sigma$-algebra tail      342.G
$\sigma$-algebra topological      270.C
$\sigma$-algebra well-measurable      407.B
$\sigma$-compact space      425.V
$\sigma$-complete (vector lattice)      310.C
$\sigma$-complete lattice      243.D
$\sigma$-complete lattice conditionally      243.D
$\sigma$-discrete (covering of a set)      425.R
$\sigma$-field Bayer sufficient      396.J
$\sigma$-field boundedly complete      396.E
$\sigma$-field complete      396.E
$\sigma$-field D-sufficient      396.J
$\sigma$-field decision theoretically sufficient      396.J
$\sigma$-field minimal sufficient      396.F
$\sigma$-field pairwise sufficient      396.F
$\sigma$-field test sufficient      396.J
$\sigma$-finite (measure space)      270.D
$\sigma$-function, of Weierstrass      134.F App. Table
$\sigma$-locally finite covering (of a set)      425.R
$\sigma$-process (of a complex manifold)      72.H
$\sigma$-space      425.Y
$\sigma$-subfield necessary      396.E
$\sigma$-subfield sufficient      396.E
$\sigma$-weak topology      308.B
$\Sigma_1^1$ set      22.A
$\Sigma_n^1$ set      22.D
$\sin^{-1}$      131.E
$\tan^{-1}$      131.E
$\tau$-function      150.D
$\varepsilon$ (topology)      424.R
$\varepsilon$ Eddington’s      App. A Table
$\varepsilon$-covering      273.B
$\varepsilon$-entropy      213.E
$\varepsilon$-expansion      111.C
$\varepsilon$-factor      450.N
$\varepsilon$-flat      178.D
$\varepsilon$-Hermitian form      60.O
$\varepsilon$-independent partitions      136.E
$\varepsilon$-induction, axiom of      33
$\varepsilon$-neighborhood (of a point)      273.C
$\varepsilon$-number      312.C
$\varepsilon$-operator, Hilbert      411.J
$\varepsilon$-quantifier, Hilbert      411.J
$\varepsilon$-sphere (of a point)      273.C
$\varepsilon$-symbol, Hilbert      411.J
$\varepsilon$-tensor product      424.R
$\varepsilon$-theorem (in predicate logic)      411.J
$\varepsilon$-trace form      60.O
$\varphi$-subsequence      354.E
$\{c_n\}$-consistency, $\{c_n\}$-consistent      399.K
${M_p}$, ultradistribution of class      125.U
$|\mathfrak B|$-summable series      379.O
(B,N)-pair      151.J
(DF)-space      424.P
(F)-space      424.I
(F, F’)-free (compact oriented G-manifold)      431.G
(H, p)-summable      379.M
(LF)-space      424.W
(M)-space (= Montel space)      424.O
(n + 2)-hyperspherical coordinates      79.A 90.B
(o)-convergent      87.L
(o)-star convergent      87.L
(p + 1)-stage method      303.D
(p, q)-ball knot      235.G
(p, q)-knot      235.G
(R,k)-summable      379.S
(R,S)-exact sequence (of modules)      200.K
(R,S)-injective module      200.K
(R,S)-projective module      200.K
(S)-space      424.S
*      see also “Star”
*-automorphism group      36.K
*-derivation      36.K
*-homomorphism      36.F
*-representation (of a Banach *-algebra)      36.F
*-subalgebra      443.C
1-1(mapping)      381.C
1-complete manifold, weakly      21.L
2-isomorphic      186.H
3j-symbol      353.B
4-current density      150.B
4-momentum operators      258.A D
5-set      308.I
6j-symbol      353.B
9j symbol      353.C
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте