Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Axiom of parallels (in Euclidean geometry)      139.A 155.B
Axiom of reducibility (in symbolic logic)      156.B 411.K
Axiom of regularity      33.B
Axiom of replacement      33.B 381.G
Axiom of separation      33.B
Axiom of strong infinity      33.E
Axiom of subsets      33.B 381.G
Axiom of substitution      381.G
Axiom of the empty set      33.B
Axiom of the power set      33.B 381.G
Axiom of the sum set      33.B
Axiom of the unordered pair      33.B
Axiom of union      381.G
Axiom Osterwalder — Schrader      150.F
Axiom Pasch      155.B
Axiom second countability      425.P
Axiom system of      35.B
Axiom system of a structure      409.B
Axiom system of a theory      411.I
Axiom system(s)      35
Axiom the first separation      425.Q
Axiom the fourth separation      425.Q
Axiom the second separation      425.Q
Axiom the third separation      425.Q
Axiom(s)      35.A 411.I
Axiomatic quantum field theory      150.D
Axiomatic set theory      36 156.E
Axiomatization      35.A
Axiomatize (by specifying a system of axioms)      35.B
Axioms Archimedes (for real numbers)      355.B
Axioms Archimedes (in geometry)      155.B
Axioms of continuity Dedekind’s      355.A
Axioms Tietze’s first      425.Q
Axioms Tietze’s second      425.Q
Axioms Tikhonov’s separation      425.Q
Axioms Vietoris      425.Q
AxiomWightman      150.D
Axis $x_i$ (of a Euclidean space)      140
Axis (axes) of a circular cone      78.A
Axis conjugate (of a hyperbola)      78.C
Axis coordinate (of a Euclidean space)      140
Axis coordinate (of an affine frame)      7.C
Axis imaginary      74.C
Axis major (of an ellipse)      78.C
Axis minor (of an ellipse)      78.C
Axis of a parabola      78.C
Axis of convergence      240.B
Axis of rotation (of a surface of revolution)      111.I
Axis optical      180.B
Axis principal (of a central conic)      78.C
Axis principal (of a parabola)      78.C
Axis principal (of a quadric surface)      350.B
Axis principal, of inertia      271.E
Axis principal, transformation to      390.B
Axis real      74.C
Axis transverse (of a hyperbola)      78.C
Ayoub, Raymond George      4.r 123.r 295.r 328.r
Azencott, Robert Guy      136.G
Azima, Naonobu      230
Azimuth      App. A Table
Azimuthal quantum number      315.E
Aziz, Abdul Kadir      303.r
Azra, Jean-Pierre      171.r
Azumaya algebra      29.K
Azumaya Goro      8.* r K.
Azumaya lemma, Krull-      67.D
b-function      125.EE 418.H
BA      102.L
Babbage, Charles      75.A
Bachelier, Louis      45.A
Bachet de Meziriac, Claude Gaspar      296.A
Bachmann, Paul Gustav Heinrich      297.I
Back substitution      302.B
Backward analysis      138.C
Backward difference      223.C App.
Backward emission      320.A
Backward equation, Kolmogorov      115.A 260.F
Backward error analysis      302.B
Backward interpolation formula Gauss      223.C
Backward interpolation formula Newton      223.C
Backward moving average representation      395.D
Backward moving average representation canonical      395.D
Backward type      304.D F
Bacon, Francis      401.E
Badly approximable      83.B
Baer sum (of extensions)      200.K
Baer, Reinhold      2.F 122.B 200.I K
Bagemihl, Frederick      62.C-E
Bahadur efficiency      400.K
Bahadur, Raghu Raj      396.r 398.r 399.N r r
Bahmann, H.      97.B
Bailey, Norman T. J.      40.r
Baillon, Jean-Bernard      286.Y
Baily, Walter Lewis, Jr.      16.Z 32.F H
Baiocchi, Claudio      440.r
Baire condition      425.L
Baire function      84.D
Baire measurable      270.L
Baire property      425.L
Baire property Lebesgue measurability and      33.F
Baire set      126.H 270.C
Baire space      425.L
Baire zero-dimensional space      273.B
Baire — Hausdorff theorem      273.J 425.N
Baire, Rene Louis      20 21 C L r J
Bairstow method      301.E
Bairstow, L.      301.E
Baker, Alan      118.D 182.G r r
Baker, George Allen, Jr.      142.r
Baker, Henry Frederick      9.r 15.r 78.r 350.r
Baker, Kenneth R.      376.r
Bakhshali      209
Balaban, Tadeusz      325.K
Balakrishnan, A.V.      378.D
Balanced array      102.L
Balanced fractional factorial design      102.I
Balanced incomplete      102.E
Balanced incomplete block design      102.E
Balanced incomplete block design partially      102.J
Balanced incomplete efficiency-balanced      102.E
Balanced incomplete optimal      102.E
Balanced incomplete randomized      102.B
Balanced incomplete variance-balanced      102.E
Balanced mapping, A-      277.J
Balas, Egon      215.C r
Balayage      338.L
Balayage principle      338.L
Baldwin, John T.      276.F
Balian, Roger      386.r
Ball      140
Ball knot, (p,q)-      235.G
Ball n-      140
Ball open      140
Ball open n-      140
Ball pair      235.G
Ball spin      351.L
Ball unit      140
Ball unit (of a Banach space)      37.B
Ball, W. W. Rouse      157.r
BAN (best asymptotically normal)      399.K
Banach (extension) theorem, Hahn- (in a normed space)      37.F
Banach (extension) theorem, Hahn- (in a topological linear space)      424.C
Banach algebra(s)      36.A
Banach analytic space      23.G
Banach area (of a surface)      246.G
Banach integral      310.I
Banach lattice      310.F
Banach Lie group      286.K
Banach limit      37.F
Banach manifold      105.Z
Banach space reflexive      37.G
Banach space regular      37.G
Banach space(s)      37.A B
Banach star algebra      36.F
Banach theorem      37.I
Banach — Alaoglu theorem (in a Banach space)      37.E
Banach — Alaoglu theorem (in a topological linear space)      424.H
Banach — Steinhaus theorem (in a Banach space)      37.H
Banach — Steinhaus theorem (in a topological linear space)      424.J
Banach, Stefan      20 23.G 36.A F B E F H I O r Z I H J X
Band, Mobius      410.B
Banerjee, Kali S.      102.r
Bang, Thoger Sophus Vilhelm      58.F
Bang-bang control      405.C
Banica (Banica), Constantin      23.r
Baouendi, M. Salah      323.N 345.A
Bar construction (of an Eilenberg — MacLane complex)      70.F
Bar-Hillel, Yehoshua      96.r
Barankin theorem      399.D
Barankin, Edward William      396.r 399.D r
Barban, Mark Borisovich      123.E
Barbey, Klaus      164.r
Barbosa, Joao Lucas Marques      275.B
Barbu, Viorel      88.r 440.r
Barden, Dennis      65.C
Bardos, Claude Williams      204.E
Bargaining set      173.D
Bargaining solution, Nash      173.C
Bargmann, Valentine      258.r 437.EE
Bari, Nina Karlovna      159.J
Barlow, Peter      NTR
Barlow, William      92.F
Barnes extended hypergeometric function      206.C App. Table
Barnes, Ernest William      206.C App. A Table
Barr, Michael      200.r
Barrel (in a locally convex space)      424.I
Barreled (locally convex space)      424.I
Barreled (locally convex space)quasi-      424.I
Barrier      120.D
Barrier absorbing      115.B
Barrier reflecting      15.B C
Barrow, Isaac      265 283
Barth, Wolf Paul      16.r
Bartle — Dunford — Schwartz integral      443.G
Bartle, Robert Gardner      68.M 443.A G
Bartlett, Maurice Stevenson      40.r 44.r 280.J 407.r421.C r
Barwise, Jon      356.r
Barycenter (of a rigid body)      271.E
Barycenter (of points of an affine space)      7.C
Barycentric coordinates (in a Euclidean complex)      70.B
Barycentric coordinates (in an affine space)      7.C 90.B
Barycentric coordinates (in the polyhedron of a simplicial complex)      70.C
Barycentric derived neighborhood, second      65.C
Barycentric refinement      425.R
Barycentric subdivision (of a Euclidean complex)      70.B
Barycentric subdivision (of a simplicial complex)      70.C
Baryons      132.B
Base (curve of a roulette)      93.H
Base (in a Banach space)      37.L
Base (of a logarithmic function)      131.B
Base (of a point range)      343.B
Base (of a polymatroid)      66.F G
Base data      96.B
Base filter      87.I
Base for the neighborhood system      425.E
Base for the space      425.E
Base for the topology      425.F
Base for the uniformity      436.B
Base functions      304.B
Base local      425.E
Base normal      172.E
Base open      425.F
Base point of a linear system      16.N
Base point of a loop      170
Base point of a topological space      202.B
Base space of a fiber bundle      147.B
Base space of a fiber space      148.B
Base space of a Riemann surface      367.A
Base term (of a spectral sequence)      200.J
Base units      414.A
Bashforth method, Adams-      303.E
Bashforth, F.      303.E
Basic $Z_1$-extension      14.L
Basic components (of an m-dimensional surface)      110.A
Basic concept (of a structure)      409.B
Basic equation      320.E
Basic feasible solution      255.A
Basic field (of linear space)      256.A
Basic form      255.A
Basic interval      4.B
Basic invariant      226.B
Basic limit theorem      260.C
Basic open set      425.F
Basic optimal solution      255.A
Basic property (of a structure)      409.B
Basic ring (of a module)      277.D
Basic set (for an Axiom A flow)      126.J
Basic set (of a structure)      409.B
Basic solution      255.A
Basic solution feasible      255.A
Basic solution optimal      255.A
Basic space (of a probability space)      342.B
Basic surface (of a covering surface)      367.B
Basic variable      255.A
Basic vector field      80.H
Basin      126.F
Basis (in a Banach space)      37.L
Basis (of a homogeneous lattice)      182.B
Basis (of a linear space)      256.E
Basis (of a module)      277.G
Basis (of an Abelian group)      2.B
Basis (of an ideal)      67.B
Basis canonical      201.B
Basis canonical homology      11.C
Basis Chevailey canonical      248.Q
Basis dual      256.G
Basis minimal      14.B
Basis normal      172.E
Basis of order r in N      4.A
Basis orthonormal      197.C
Basis Schauder      37.L
Basis strongly distinguished      418.F
Basis theorem Hilbert (on Noetherian rings)      284.A
Basis theorem Ritt (on differential polynomials)      113
Basis transcendence      149.K
Basis Weyl canonical      248.P
Bass, Hyman      122.F 200.r 237 J r
Bass, Robert Wauchope      289.D
Bastin, J.      351.r
Batchelder, Paul M.      104.r
Batchelor, George Keith      205.r 433.C r
Bateman, Paul Trevier      4.D 348.K
Bath, heat      419.B
Bauer, Friedrich Ludwig      302.r
Bauer, Heinz      193.U
Baum, Paul Frank      366.E 427.B
Bayer, Pilar      450.r
Bayes estimator      399.G
Bayes formula      342.F 405.I
Bayes risk      398.B
Bayes solution      398.B
Bayes solution generalized      398.B
Bayes solution in the wider sense      398.B
Bayes sufficient cr-field      396.J
Bayes, Thomas      342.A F E
Bayesian approach      401.B
Bayesian model      403.G
Bazilevich, Ivan Evgen’evich      438.B
BCH (Base — Chaudhuri — Hooquenghem) code      63.D
BDH (Brown — Douglas — Fillmore) theory      36.J 390.J
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте