Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Class 1 function of at most      84.D
Class algebra (of central simple algebras)      29.E
Class ambig (of a quadratic field)      347.F
Class Bravais      92.B
Class canonical (of an algebraic curve)      9.C
Class canonical cohomology      59.H
Class canonical divisor      11.D
Class characteristic (of a fiber bundle)      147.K
Class characteristic (of a vector bundle)      56
Class characteristic (of an extension of module)      200.K
Class characteristic (of foliations)      154.G
Class characteristic, of a manifold      56.F
Class characteristic, of codimension q      154.G
Class Chern (of a manifold)      56.F
Class Chern (of a real 2n-dimensional almost complex manifold)      147.N
Class Chern(of a $\mathbf C^n$-bundle)      56.C
Class Chern(of a U(n)-bundle)      147.N
Class cohomology      200.H
Class combinational Pontryagin      56.H
Class complete      398.B
Class completely additive      270.B
Class conjugacy (of an element of a group)      190.C
Class countably additive      270.B
Class crystal      92.B
Class curve of the second      78.K
Class differential divisor (of a Riemann surface)      11.D
Class divisor (on a Riemann surface)      11.D
Class Dynkin      270.B
Class equivalence      135.B
Class ergodic      260.B
Class essentially complete      398.B
Class Euler — Poincare (of a manifold)      56.F
Class Euler — Poincare (of an oriented $\mathbf R^n$-bundle)      56.B
Class field      59.B
Class field absolute      59.A
Class field theory      59
Class field theory local      59.G
Class field tower problem      59.F
Class finitely additive      270.B
Class formation      59.H
Class function (on a compact group)      69.B
Class fundamental (of a Poincare pair)      114.J
Class fundamental (of an Eilenberg — MacLane space)      70.F
Class fundamental (of the Thom complex MG)      114.G
Class fundamental, with coefficient Z      265.B
Class generalized Hardy      164.G
Class Gevrey      58.G 125.U
Class group divisor      11.D
Class group of congruence      14.H
Class Hardy      43.F 159.G
Class Hilbert — Schmidt      68.I
Class holosymmetric      92.B
Class homology      200.H 201.B
Class homotopy      202.B
Class ideal (of a Dedekind domain)      67.K
Class ideal (of an algebraic number field)      14.E
Class ideal, in the narrow sense      14.G 343.F
Class idele      6.D
Class idele, group      6.D
Class linear equivalence (of divisors)      16.M
Class main      241.A
Class mapping      202.B
Class minimal complete      398.B
Class monotone      270.B
Class multiplicative      270.B
Class n function of      84.D
Class n projective set of      22.D
Class nuclear      68.I
Class number (of a Dedekind domain)      67.K
Class number (of a simple algebra)      27.D
Class number (of an algebraic number field)      14.E
Class of a quadratic form over an algebraic number field      348.H
Class of Abelian groups      202.N
Class oriented cobordism      114.H
Class Pontryagin (of a manifold)      56.F
Class Pontryagin (of an $\mathbf R^n$-bundle)      56.D
Class proper      381.G
Class q-dimensional homology      201.B
Class residue (modulo an ideal in a ring)      368.F
Class Steifel — Whitney (of a differentiable manifold      147.M
Class Stiefel — Whitney (of a manifold)      56.F
Class Stiefel — Whitney (of a topological manifold)      56.F
Class Stiefel — Whitney (of an $\mathbf R^n$-bundle)      56.B
Class Stiefel — Whitney (of an O(n)-bundle)      147.M
Class surface of the second      350.D
Class the Dynkin, theorem      270.B
Class the monotone, theorem      270.B
Class theorems, complete      398.D
Class Todd      237.F
Class total Chern      56.C
Class total Pontryagin      56.D
Class total Stiefel — Whitney      56.B
Class trace      68.I
Class universal Chern      56.C
Class universal Euler — Poincare      56.B
Class universal Stiefel — Whitney      56.B
Class unoriented cobordism      114.H
Class Wu (of a topological manifold)      56.F
Class Zygmund      159.E
Classical (potential)      402.G
Classical (state)      402.G
Classical compact real simple Lie algebra      248.T
Classical compact simple Lie group      249.L
Classical complex simple Lie algebra      248.S
Classical complex simple Lie group      249.M
Classical descriptive set theory      356.H
Classical dynamical system      126.L 136.G
Classical group infinite      147.I202.V
Classical group(s)      60.A
Classical logic      411.L
Classical mechanics      271.A
Classical risk theory      214.C
Classical solution (to Plateau’s problem)      275.C
Classical statistical mechanics      402.A
Classical theory of the calculus of variations      46.C
Classification (with respect to an equivalence relation)      135.B
Classification theorem first (in the theory of obstructions)      305.B
Classification theorem Hopf      202.I
Classification theorem on a fiber bundle      147.G
Classification theorem second (in the theory of obstructions)      305.C
Classification theorem third (in the theory of obstructions)      305.C
Classification theory of Riemann surfaces      367.E
Classificatory procedure      280.I
Classifying mapping (map) (in the classification theorem of fiber bundles)      147.G
Classifying space (of a topological group)      174.G H
Classifying space cohomology rings of      App. A Table
Classifying space for $\Gamma^r_q$-structures      154.E
Classifying space n- (of a topological group)      147.G
Clatworthy, Willard H.      STR
Clausius, Rudolf Julius Emmanuel      419.A
Clebsch — Gordan coefficient      258.B 353.B
Clebsch, Rudolf Friedrich Alfred      11.B 226.G 353.B
Clemence, Gerald Maurice      55.r 392.r
Clemens, Charles Herbert      16.J
Clenshaw — Curtis formulas      299.A
Clenshaw, Charles William      299.A
Clifford algebras      61
Clifford group      61.D
Clifford group reduced      61.D
Clifford group special      61.D
Clifford number      61.A
Clifford torus      275.F
Clifford torus, generalized      275.F
Clifford, Alfred H.      190.r 243.G
Clifford, William Kingdon      9.C 61.A D
Clinical trials      40.F
Closable operator      251.D
Closed absolutely (space)      425.U
Closed algebraically (field)      149.I
Closed algebraically (in a field)      149.I
Closed arc      93.B
Closed boundary      164.C
Closed braid      235.F
Closed convex curve      111.E
Closed convex hull      424.H
Closed convex surface      111.I
Closed covering      425.R
Closed curve, simple      93.B
Closed differential      367.H
Closed differential form      105.Q
Closed formula      276.A 299.A
Closed formula in predicate logic      411.J
Closed geodesic      178.G
Closed graph theorem      37.I 25.I
Closed group      362.J
Closed H- (space)      425.U
Closed half-line (in affine geometry)      7.D
Closed half-space (of an affine space)      7.D
Closed hyperbolic, orbit      126.G
Closed ideals in Lt(G)      192.M
Closed image (of a variety)      16.I
Closed integrally (ring)      67.I
Closed interval      140
Closed interval in $\mathbf R$      355.C
Closed k- (algebraic set)      13.A
Closed linear subspace (of a Hilbert space)      197.E
Closed manifold      105.B
Closed mapping      425.G
Closed multiplicatively, subset (of a ring)      67.I
Closed operator (on a Banach space)      251.D
Closed orbit      126.D G
Closed orbit hyperbolic      126.G
Closed path (in a graph)      186.F
Closed path (in a topological space)      170
Closed path direct      186.F
Closed path space of      202.C
Closed plane domain      333.A
Closed quasi-algebraically (field)      118.F
Closed r- (space)      425.U
Closed range theorem      37.J
Closed real, field      149.N
Closed Riemann surface      367.A
Closed set      425.B
Closed set locally      425.J
Closed set relative      425.J
Closed set system of      425.B
Closed set Zariski      16.A
Closed subalgebra      36.B
Closed subgroup (of a topological group)      423.D
Closed submanifold (of a $C^{\infty}$-manifold)      105.L
Closed subsystem (of a root system)      13.L
Closed surface      410.B
Closed surface in a 3-dimensional Euclidean space      111.I
Closed system      419.A
Closed system entropy      402.G
Closed term (of a language)      276.A
Closed Zariski      16.A
Closure      425.B
Closure (in a matroid)      66.G
Closure (of an operator)      251.D
Closure algebraic (of a field)      149.I
Closure convex (in an affine space)      7.D
Closure finite (cell complex)      70.D
Closure integral (of a ring)      67.I
Closure operator      425.B
Closure Pythagorean (of a field)      155.C
Closure-preserving covering      425.X
Clothoid      93.H
Clough, Ray William, Jr.      304.r
Cloverleaf knot      235.C
Cluster      375.F
Cluster decomposition Hamiltonian      375.F
Cluster point      425.0
Cluster set boundary      62.A
Cluster set curvilinear      62.C
Cluster set interior      62.A
Cluster set(s)      62.A
Cluster value      62.A
Cluster value theorem      43.G
Clustering property      402.G
CN      App. A Table
Co-echelon space      168.B
Co-NP      71.E
Coalgebra      203.F
Coalgebra cocommutative      203.F
Coalgebra dual      203.F
Coalgebra graded      203.B
Coalgebra homomorphism      203.F
Coalgebra quotient      203.F
Coanalytic set      22.A
Coarse moduli scheme      16.W
Coarse moduli space of curves of genus g      9.J
Coarser relation      135.C
Coarser topology      425.H
Coates, John H.      118.D 182.r 450.J r
Cobordant      114.H
Cobordant foliated      154.H
Cobordant h-      114.I
Cobordant mod      2114.H
Cobordant normally      114.J
Cobordism class      114.H
Cobordism class oriented      114.H
Cobordism class unoriented      114.H
Cobordism group complex      114.H
Cobordism group of homotopy n-spheres, h-      114.I
Cobordism group oriented      114.H
Cobordism group unoriented      114.H
Cobordism ring      114.H
Cobordism ring complex      114.H
Cobordism theorem, h-      114.F
Cobordism, knot      235.G
Coboundary (coboundaries)      200.H
Coboundary (coboundaries) (in a cochain complex)      201.H
Coboundary (coboundaries) (in the theory of generalized analytic functions)      164.H
Coboundary (coboundaries)module of      200.F
Coboundary homomorphism (on cohomology groups)      201.L
Coboundary operator      200.F
Cobounded      201.P
Cochain complex      200.F 201.H
Cochain complex singular      201.H
Cochain deformation      305.B
Cochain equivalence      200.F
Cochain finite (of a locally finite simplicial complex)      201.P
Cochain homotopy      200.F
Cochain mapping      200.F 201.H
Cochain n- (for an associative algebra)      200.L
Cochain separation      305.B
Cochain subcomplex      200.F
Cochain(s)      200.H 201.H
Cochains (products of)      201.K
Cochran theorem      374.B
Cochran, William Gemmel      102.r 373.r 374.B
Cocommutative coalgebra      203.F
Cocycle (in the theory of generalized analytic functions)      164.H
Cocycle continuous      200.N
Cocycle difference      305.B
Cocycle module of      200.F
Cocycle obstruction      147.L 305.B
Cocycle separation      305.B
Cocycle vanishing (on an algebraic variety)      16.U
Cocycle(s)      200.H 201.H
Codazzi — Mainardi equations      111.H App. Table
Codazzi, Delfino      111.H 365.C 417.F App. A Table
Codazzi, equation of      365.C
Coddington, Earl Alexander      107.r 252.r 253.r 254.r 314.r 315.r 316.r 394.r
Code BHC (Bose — Chaundhuri — Hocquenghem)      63.D
Code block      63.A 213.F
Code convolutional      63.E
Code cyclic      63.D
Code Goppa      63.E
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте